Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
基本信息
- 批准号:2326894
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Neural Networks (DNNs) have recently enabled revolutionary advances in a wide variety of tasks, however these deep networks demand large amounts of memory and computation resources. Such demands can be highly difficult (or even impractical) for systems on the edge. Although DNNs are very accurate, the energy consumed by DNNs is orders of magnitude higher than biological neural activities for similar tasks. It is important to reduce the computational and energy demands of machine learning hardware so that inferencing on the edge can become a low-cost, low-energy task. Weightless Neural Networks (WNNs) represent a distinct class of neural models which derive inspiration from the processing of input signals by the dendritic trees of biological neurons. WNNs do not use weights or multiply-add operations to determine their responses. Instead, they rely on value lookups implemented using look-up tables. This project explores small models that are more energy efficient compared to multiplication-and-addition-based deep learning models. WNNs are very promising from the perspective of energy-efficiency, and low latency, and our effort is directed at enabling a myriad of ultra-low energy edge applications otherwise impossible. This project explores low-energy machine learning hardware which combine the benefits of traditional DNNs and the computation-less weightless neural networks. Techniques used include (1) utilizing multi-layer networks and hierarchical networks to create novel weightless neural network architectures, (2) devising novel training algorithms for WNNs utilizing multi-shot training with feedback (3) exploring quasi-weightless neural networks using emerging novel memory technologies, and (4) designing systems for energy-efficient edge intelligence. The collaborative project between the University of Texas and Stanford University innovates across multiple layers of the system stack, including architecture and circuit layers. The collaborative activity between the University of Texas and Stanford involves many underrepresented communities from a STEM perspective, including minority and women, undergrads, and first-generation college students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络 (DNN) 最近在各种任务中取得了革命性的进步,但这些深度网络需要大量的内存和计算资源。对于边缘系统来说,这样的要求可能非常困难(甚至不切实际)。尽管 DNN 非常准确,但 DNN 消耗的能量比类似任务的生物神经活动高出几个数量级。 减少机器学习硬件的计算和能源需求非常重要,这样边缘推理才能成为一项低成本、低能耗的任务。失重神经网络 (WNN) 代表了一类独特的神经模型,其灵感来自生物神经元树突树对输入信号的处理。 WNN 不使用权重或乘加运算来确定其响应。相反,它们依赖于使用查找表实现的值查找。 该项目探索与基于乘法和加法的深度学习模型相比更节能的小型模型。从能源效率和低延迟的角度来看,WNN 非常有前途,我们的努力旨在实现无数超低能耗边缘应用,否则这是不可能的。该项目探索低能耗机器学习硬件,结合了传统 DNN 和无需计算的失重神经网络的优点。 使用的技术包括(1)利用多层网络和分层网络创建新颖的失重神经网络架构,(2)利用带反馈的多镜头训练为 WNN 设计新颖的训练算法(3)利用新兴新颖的方法探索准失重神经网络存储器技术,(4) 设计节能边缘智能系统。德克萨斯大学和斯坦福大学之间的合作项目在系统堆栈的多个层上进行创新,包括架构和电路层。德克萨斯大学和斯坦福大学之间的合作活动涉及许多从 STEM 角度来看代表性不足的社区,包括少数族裔和女性、本科生和第一代大学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizy John其他文献
SecurityCloak: Protection against cache timing and speculative memory access attacks
SecurityCloak:防止缓存计时和推测内存访问攻击
- DOI:
10.1016/j.sysarc.2024.103107 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:0
- 作者:
Fern;o Mosquera;o;Ashen Ekanayake;William Hua;Krishna Kavi;Gayatri Mehta;Lizy John - 通讯作者:
Lizy John
Lizy John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizy John', 18)}}的其他基金
EAGER: Improving Reproducibility of Computing Research using Proxy Workloads
EAGER:使用代理工作负载提高计算研究的可重复性
- 批准号:
1745813 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
IISWC 2012 Student Travel Grants
IISWC 2012 学生旅费补助
- 批准号:
1261723 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Workload Characterization and Benchmark Synthesis for Emerging Computing Systems
SHF:小型:新兴计算系统的工作负载表征和基准综合
- 批准号:
1117895 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
IISWC 2011 Student Travel Grants
IISWC 2011 学生旅费补助
- 批准号:
1202396 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CRI: CRD Collaborative Research: Archer - Seeding a Community-based Computing Infrastructure for Computer Architecture Research and Education
CRI:CRD 协作研究:Archer - 为计算机体系结构研究和教育提供基于社区的计算基础设施
- 批准号:
0750860 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Simplifying Computer Performance Evaluation using Workload Characterization
使用工作负载表征简化计算机性能评估
- 批准号:
0702694 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Statistical Techniques for Computer Performance Evaluation
计算机性能评估的统计技术
- 批准号:
0429806 - 财政年份:2004
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
IT/SY(CISE): Designing Microprocessors and Computer Systems for Emerging Workloads
IT/SY(CISE):为新兴工作负载设计微处理器和计算机系统
- 批准号:
0113105 - 财政年份:2001
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Experimental Software Systems: Performance Impact of Contemporary Programming Paradigms and Workloads
实验软件系统:当代编程范式和工作负载的性能影响
- 批准号:
9807112 - 财政年份:1998
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Improving the Access-Execute Balance in High Performance Processors
职业:改善高性能处理器的访问执行平衡
- 批准号:
9796098 - 财政年份:1996
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
- 批准号:62265011
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant