Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys

合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计

基本信息

  • 批准号:
    2323766
  • 负责人:
  • 金额:
    $ 47.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

The traditional trial-and-error approach for discovering new alloys has become increasingly expensive and time-consuming. This Designing Materials to Revolutionize and Engineer our Future (DMREF) project aims to leverage the power of artificial intelligence to enable the rapid and automated design of metallic alloys capable of withstanding both extreme stress and recoverable elastic deformation before permanent plastic deformation. The potential candidate alloys are complex concentrated alloys that are consisted of multiple high-concentration chemical elements. These alloys contain intricate fluctuations of both chemical elements and atomic positions within metallic crystals. The tremendous degrees of freedom in these fluctuations obstruct the efficient search for alloys with peak strength and peak elastic deformation limit. To overcome this barrier, the research team will employ artificial intelligence, computational modeling, and experimental tools to design, synthesize, and test ultrastrong and ultraelastic metallic alloys. A unique two-stage automated research workflow that transits from a data-driven approach to a physics-based approach will be constructed based on integrations of artificial intelligence techniques and physical models. Such integrations will enhance the understanding of deformation mechanisms in complex materials, enabling their use in structural and functional applications. This research team with diverse backgrounds will provide incorporative opportunities for undergraduate and graduate students to learn both materials science and artificial intelligence. Moreover, this project is committed to promoting diversity, equity, and inclusion in research and education. The research team will actively engage underrepresented minority students in research projects through education and outreach activities. The innovative strategies developed through this research, enabled by artificial intelligence, will have transformative impacts not only on metallic alloy design but also on the development of multifunctional materials and manufacturing processes.The research team is devoted to developing an artificial intelligence-enabled automated research workflow to revolutionize the design and manufacturing processes of ultrastrong and ultraelastic metallic alloys, which have extremely high yield strengths and elastic limits simultaneously. The general strategy is to manipulate and precisely tailor the local lattice distortions and chemical concentration fluctuations for impeding deformation defect motions in complex concentrated alloys. To achieve this goal, the automated research workflow will seamlessly integrate each step of material design aided by physical principles and artificial intelligence. Specifically, iterative design steps will involve atomistic simulations of deformation defects, depositing thin films of refractory metals-based complex concentrated metallic alloys using automated co-sputtering and in-situ characterization feedback, followed by comprehensive mechanical and structural characterizations using advanced nanomechanical measurements, spectroscopic techniques, and cutting-edge electron microscopy. By leveraging low-rank matrix/tensor factorization and autoencoder neural networks, key features of material structures and defect properties will be extracted from simulations, deposition parameters, mechanical behaviors, spectra, and chemical/structural characterization results. These key features facilitate the construction of a two-stage automated research workflow that transitions from a data-driven approach to a physics-based approach for designing and validating alloy candidates. This project aims to advance both the scientific understanding of deformation mechanisms under extreme loading conditions and manufacturing technologies of complex concentrated alloys and other chemically complex materials. The research team provides broad education opportunities for students with diverse backgrounds, including those in materials science, computer science, and mechanical engineering majors. Also, this project promotes collaboration and innovation through the archiving and sharing of codes and data on Materials Commons, a public repository and collaboration platform for materials studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发现新合金的传统试错方法变得越来越昂贵和耗时。该“设计材料以彻底改变和设计我们的未来”(DMREF)项目旨在利用人工智能的力量,实现金属合金的快速自动化设计,使其能够在永久塑性变形之前承受极端应力和可恢复弹性变形。潜在的候选合金是由多种高浓度化学元素组成的复杂浓缩合金。这些合金在金属晶体内含有复杂的化学元素和原子位置波动。这些波动的巨大自由度阻碍了有效寻找具有峰值强度和峰值弹性变形极限的合金。为了克服这一障碍,研究团队将利用人工智能、计算模型和实验工具来设计、合成和测试超强和超弹性金属合金。将基于人工智能技术和物理模型的集成构建从数据驱动方法过渡到基于物理方法的独特的两阶段自动化研究工作流程。这种集成将增强对复杂材料变形机制的理解,使其能够在结构和功能应用中使用。这个具有不同背景的研究团队将为本科生和研究生提供学习材料科学和人工智能的结合机会。 此外,该项目致力于促进研究和教育的多样性、公平性和包容性。研究团队将通过教育和推广活动,积极让代表性不足的少数族裔学生参与研究项目。通过这项研究开发的创新策略,在人工智能的支持下,不仅将对金属合金设计产生变革性影响,还将对多功能材料和制造工艺的开发产生变革性影响。研究团队致力于开发人工智能支持的自动化研究工作流程彻底改变超强和超弹性金属合金的设计和制造工艺,这些合金同时具有极高的屈服强度和弹性极限。总体策略是操纵和精确调整局部晶格畸变和化学浓度波动,以阻止复杂浓缩合金中的变形缺陷运动。为了实现这一目标,自动化研究工作流程将在物理原理和人工智能的辅助下无缝集成材料设计的每个步骤。具体来说,迭代设计步骤将涉及变形缺陷的原子模拟,使用自动共溅射和原位表征反馈沉积基于难熔金属的复杂浓缩金属合金薄膜,然后使用先进的纳米机械测量、光谱学进行全面的机械和结构表征。技术和尖端电子显微镜。通过利用低秩矩阵/张量分解和自动编码器神经网络,将从模拟、沉积参数、机械行为、光谱和化学/结构表征结果中提取材料结构和缺陷属性的关键特征。这些关键功能有助于构建两阶段自动化研究工作流程,从数据驱动方法过渡到基于物理的方法来设计和验证候选合金。该项目旨在促进对极端载荷条件下变形机制的科学理解以及复杂浓缩合金和其他化学复杂材料的制造技术。研究团队为不同背景的学生提供广泛的教育机会,包括材料科学、计算机科学和机械工程专业的学生。此外,该项目通过在 Materials Commons(材料研究的公共存储库和协作平台)上归档和共享代码和数据来促进协作和创新。该奖项反映了 NSF 的法定使命,并通过使用基金会的知识进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Yan其他文献

Immunological characteristics of outer membrane protein omp31 of goat Brucella and its monoclonal antibody.
山羊布鲁氏菌外膜蛋白omp31及其单克隆抗体的免疫学特性
Design and implementation of flow-based programmable nodes in software-defined sensor networks
软件定义传感器网络中基于流的可编程节点的设计与实现
Long-term implications of municipal solid waste (MSW) classification on emissions of PCDD/Fs and other pollutants: Five-year field study in a full-scale MSW incinerator in southern China
城市固体废物 (MSW) 分类对 PCDD/F 和其他污染物排放的长期影响:对中国南方大型城市固体废物焚烧炉进行的五年现场研究
  • DOI:
    10.1016/j.jclepro.2024.140848
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Pengju Wang;Feng Xie;Feng Yan;Xuehua Shen;Heijin Chen;Rigang Zhong;Hao Wu;Zuo
  • 通讯作者:
    Zuo
Lensless shadow microscopy-based shortcut analysis strategy for fast quantification of microplastic fibers released to water.
基于无透镜阴影显微镜的快捷分析策略,用于快速定量释放到水中的微塑料纤维。
  • DOI:
    10.1016/j.watres.2024.121758
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Yu Su;Chenqi Yang;Yao Peng;Cheng Yang;Yanhua Wang;Yong Wang;Feng Yan;Baoshan Xing;Rong Ji
  • 通讯作者:
    Rong Ji
A Cooperative Resource Optimization Framework for Blockchain-based Vehicular Networks with MEC
基于区块链的 MEC 车载网络协作资源优化框架

Feng Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Yan', 18)}}的其他基金

CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
  • 批准号:
    2413632
  • 财政年份:
    2024
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Photomechanical Behavior in Photovoltaic Semiconductors
合作研究:光伏半导体中的光机械行为
  • 批准号:
    2330728
  • 财政年份:
    2023
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Standard Grant
PFI-TT: Highly Efficient, Scalable, and Stable Carbon-based Perovskite Solar Modules
PFI-TT:高效、可扩展且稳定的碳基钙钛矿太阳能模块
  • 批准号:
    2329871
  • 财政年份:
    2023
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Machine Learning-assisted Ultrafast Physical Vapor Deposition of High Quality, Large-area Functional Thin Films
合作研究:机器学习辅助超快物理气相沉积高质量、大面积功能薄膜
  • 批准号:
    2226918
  • 财政年份:
    2023
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halide Materials for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物材料的设计和发现
  • 批准号:
    2330738
  • 财政年份:
    2023
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
  • 批准号:
    2305491
  • 财政年份:
    2022
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
  • 批准号:
    2305491
  • 财政年份:
    2022
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halide Materials for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物材料的设计和发现
  • 批准号:
    2127640
  • 财政年份:
    2021
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
  • 批准号:
    2048044
  • 财政年份:
    2021
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
I-Corps: Printable Carbon-based Perovskite Thin Film Solar Cells
I-Corps:可印刷碳基钙钛矿薄膜太阳能电池
  • 批准号:
    2039883
  • 财政年份:
    2020
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
  • 批准号:
    2323118
  • 财政年份:
    2023
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 47.59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了