Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries

合作研究:DMREF:下一代可充电电池电解质的高通量筛选

基本信息

项目摘要

Rechargeable batteries have become one of the most popular energy storage devices for electric vehicles, electronics, and grid energy storage. Developing novel electrolytes for the next generation of rechargeable batteries require more understanding of transport properties, microstructures, and the impact of microstructure on transport property. In this project, the investigators will systematically vary the composition and concentration of the electrolytes to determine the optimum solution for advanced rechargeable batteries. The success of the proposed research will provide high throughput experimentation/characterization and machine learning platforms. Moreover, the integrated research and educational programs will broadly impact the university, secondary education, and the general public. The research results will be into the investigators' courses and be used to train undergraduate and graduate students in the interdisciplinary research areas. New educational outreach initiatives include having an Electrolyte for Energy Storage workshop for local high school students and teachers each fall to enhance the broader impact of this NSF project.The fundamental interactions in the electrolyte directly determine the solvation structures, kinetics, and battery performance of the bulk electrolytes. Understanding the complex interactions and their correlation with electrolyte performance is significant for exploring their working mechanisms and realizing the rational design of battery electrolytes. The novelty of this proposal lies in the use of advanced high-throughput characterization with the help of MD simulation and machine learning to determine the link between molecular interactions and the macroscopic properties of battery electrolytes. The proposal aims to (1) gain a good understanding of the solvation structure through multimodal characterization methods Raman and X-ray for high throughput experimentation/characterization. High-throughput X-ray scattering techniques (USAXS/SAXS/WAXS for APS) will be used to characterize solution organization as a function of ion composition, ion concentration, and temperature; (2) to correlate the structure-property relationship by studying transport properties through high-throughput computational screening studies. A computational platform will be developed to screen structure/property relationships by AIMD and MD; (3) A machine learning-based data analysis platform will be created to predict and identify battery properties by analyzing high-throughput structural and simulation data.This project is supported by the Division of Materials Research and the Chemical, Biological, Environmental Engineering and Transport Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可充电电池已成为电动汽车、电子产品和电网储能最流行的储能设备之一。开发用于下一代可充电电池的新型电解质需要更多地了解传输特性、微观结构以及微观结构对传输特性的影响。在该项目中,研究人员将系统地改变电解质的成分和浓度,以确定先进可充电电池的最佳解决方案。拟议研究的成功将提供高通量实验/表征和机器学习平台。此外,综合研究和教育计划将广泛影响大学、中等教育和公众。研究成果将纳入研究者的课程中,并用于培养跨学科研究领域的本科生和研究生。新的教育推广计划包括每年秋天为当地高中生和教师举办一次储能电解质研讨会,以增强该 NSF 项目的更广泛影响。电解质中的基本相互作用直接决定了电解质的溶剂化结构、动力学和电池性能。散装电解质。了解复杂的相互作用及其与电解质性能的相关性对于探索其工作机制和实现电池电解质的合理设计具有重要意义。该提案的新颖性在于利用先进的高通量表征并借助MD模拟和机器学习来确定分子相互作用与电池电解质的宏观特性之间的联系。该提案的目的是 (1) 通过用于高通量实验/表征的多模态表征方法拉曼和 X 射线获得对溶剂化结构的良好理解。高通量 X 射线散射技术(用于 APS 的 USAXS/SAXS/WAXS)将用于表征溶液组织随离子成分、离子浓度和温度的变化; (2) 通过高通量计算筛选研究来研究传输特性,从而关联结构-特性关系。将开发一个计算平台,通过AIMD和MD筛选结构/性质关系; (3) 将创建一个基于机器学习的数据分析平台,通过分析高通量结构和模拟数据来预测和识别电池特性。该项目得到材料研究部和化学、生物、环境工程和运输部的支持该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Zhang其他文献

One-Equation Turbulence Model Based on Extended Bradshaw Assumption
基于扩展Bradshaw假设的一方程湍流模型
  • DOI:
    10.2514/1.j053039
  • 发表时间:
    2015-04-24
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jinglei Xu;Yang Zhang;J. Bai
  • 通讯作者:
    J. Bai
Phonetic Encoding Contributes to the Processing of Linguistic Prosody at the Word Level: Cross-Linguistic Evidence From Event-Related Potentials.
语音编码有助于在单词级别处理语言韵律:来自事件相关电位的跨语言证据。
Simulation analyzing the influence of cutting HT250 by self-prepared Si3N4 insert at different feed rate
仿真分析不同进给量下自制Si3N4刀片切削HT250的影响
Verification of Anisotropic Mesh Adaptation for Unsteady Mixing and Reacting flow
非稳态混合和反应流的各向异性网格自适应验证
  • DOI:
    10.2514/1.j060098
  • 发表时间:
    2021-07-20
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jianfeng Zou;Chenglin Zhou;Yang Zhang;Yao Zheng
  • 通讯作者:
    Yao Zheng
Power transformer fault diagnosis considering data imbalance and data set fusion
考虑数据不平衡和数据集融合的电力变压器故障诊断
  • DOI:
    10.1049/hve2.12059
  • 发表时间:
    2020-12-09
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Yang Zhang;Hong Cai Chen;Yaping Du;Min Chen;Jieying Liang;Jianhong Li;Xiqing Fan;Xin Yao
  • 通讯作者:
    Xin Yao

Yang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Zhang', 18)}}的其他基金

Collaborative Research: HCC: Small: Toolkits for Creating Interaction-powered Energy-aware Computing Systems
合作研究:HCC:小型:用于创建交互驱动的能源感知计算系统的工具包
  • 批准号:
    2228982
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectral Discrimination of Single Molecules with Photoactivatable Fluorescence
合作研究:利用光激活荧光对单分子进行光谱辨别
  • 批准号:
    2246548
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Toolkits for Creating Interaction-powered Energy-aware Computing Systems
合作研究:HCC:小型:用于创建交互驱动的能源感知计算系统的工具包
  • 批准号:
    2228982
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Programmable Visual Capabilities of Environments through 3D printed Light-transfer
合作研究:HCC:小型:通过 3D 打印光传输实现环境的可编程视觉功能
  • 批准号:
    2213843
  • 财政年份:
    2022
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Framework: Sofware: Collaborative Research: CyberWater -An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:Cyber​​Water - 一个开放且可持续的框架,用于将各种数据和模型集成到 HPC 的来源和访问权限
  • 批准号:
    2018500
  • 财政年份:
    2020
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
IIBR: Informatics: RAPID: Genome-wide Structure and Function Modeling of the SARS-CoV-2 Virus
IIBR:信息学:RAPID:SARS-CoV-2 病毒的全基因组结构和功能建模
  • 批准号:
    2030790
  • 财政年份:
    2020
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
I-Corps: Soft Robotic Arms as Human-Compatible Machines
I-Corps:作为人类兼容机器的软机械臂
  • 批准号:
    1946216
  • 财政年份:
    2019
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Framework: Sofware: Collaborative Research: CyberWater -An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:Cyber​​Water - 一个开放且可持续的框架,用于将各种数据和模型集成到 HPC 的来源和访问权限
  • 批准号:
    1835656
  • 财政年份:
    2019
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    1564756
  • 财政年份:
    2016
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Climate Mitigation and Earth System Management from Local to Global Scale: Modeling Technology-Driven Futures
从地方到全球规模的气候减缓和地球系统管理:模拟技术驱动的未来
  • 批准号:
    1049200
  • 财政年份:
    2011
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
  • 批准号:
    2323316
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
  • 批准号:
    2323342
  • 财政年份:
    2023
  • 资助金额:
    $ 57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了