Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
基本信息
- 批准号:2320697
- 负责人:
- 金额:$ 20.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will fund research that enables advancements in transportation efficiency and safety through the deployment of virtually connected and automated vehicles among human-driven vehicles, thereby promoting the progress of science and advancing the national prosperity. While potential benefits for fuel efficiency and road safety from full vehicle automation and vehicle-to-vehicle communication are maximized in a traffic system without human drivers, mixed traffic scenarios with coexistence between human-driven vehicles and automated vehicles will be the norm in the intermediate term. A major challenge to the control of automated vehicles in such environments is the requirement that the behavior of the human drivers either be reliably described using explicit car-following models or accurately predicted using computationally efficient, data-driven techniques, neither of which is currently possible. This project aims to resolve this challenge by developing a new model-free, data-efficient control and optimization framework that will enable fast decision-making for efficient, robust, and safe coordination of multiple connected and automated vehicles in mixed traffic systems. The results will be disseminated to the research community and the automotive industry through sharing of open-source software code and organization of a workshop with speakers from both academia and industry. These efforts are closely integrated with educational and outreach activities that aim to increase the participation of undergraduate and high-school students in engineering research.This research aims to develop the foundations of efficient and scalable control designs for connected and automated vehicles that can meet real-time computational constraints and guarantee safe performance in mixed traffic, without explicit modeling of the behavior of human-driven vehicles. It accomplishes this outcome by building a data-driven predictive control framework in which system-level cost functions and constraints are synergistically designed to handle unknown and uncertain traffic dynamics directly from input/output data, and adaptive data library updates respond to time-varying traffic conditions. Additionally, the research strives to develop algorithms for scalable, online data compression and distributed optimization that exploit cascading system structures to decompose centralized predictive control problems into those of lower dimension without compromising control performance. Extensive simulations and field experiments conducted in collaboration with an industry partner will be used to evaluate the theoretical outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将资助通过在人类驾驶车辆中部署虚拟互联和自动化车辆来提高交通效率和安全性的研究,从而促进科学进步和促进国家繁荣。虽然在没有人类驾驶员的交通系统中,全车辆自动化和车辆间通信对燃油效率和道路安全的潜在好处得到了最大化,但人类驾驶车辆和自动驾驶车辆共存的混合交通场景将成为中间阶段的常态。学期。在这种环境中控制自动车辆的一个主要挑战是要求人类驾驶员的行为要么使用明确的跟车模型进行可靠描述,要么使用计算效率高的数据驱动技术进行准确预测,而这两种方法目前都是不可能的。该项目旨在通过开发一种新的无模型、数据高效的控制和优化框架来解决这一挑战,该框架将能够快速决策,从而实现混合交通系统中多辆互联和自动车辆的高效、稳健和安全协调。研究结果将通过共享开源软件代码以及组织由学术界和工业界的演讲者参加的研讨会来传播给研究界和汽车行业。这些努力与教育和外展活动紧密结合,旨在提高本科生和高中生对工程研究的参与度。这项研究旨在为互联和自动化车辆的高效和可扩展控制设计奠定基础,以满足实际需求。时间计算限制并保证混合交通中的安全性能,无需对人类驾驶车辆的行为进行明确的建模。它通过构建数据驱动的预测控制框架来实现这一结果,其中系统级成本函数和约束被协同设计,以直接从输入/输出数据处理未知和不确定的流量动态,并且自适应数据库更新响应时变流量状况。此外,该研究致力于开发可扩展的在线数据压缩和分布式优化算法,利用级联系统结构将集中式预测控制问题分解为较低维度的问题,而不会影响控制性能。与行业合作伙伴合作进行的广泛模拟和现场实验将用于评估理论结果。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Zheng其他文献
A Spectral Bundle Method for Sparse Semidefinite Programs
稀疏半定规划的谱丛方法
- DOI:
10.1109/cdc49753.2023.10383895 - 发表时间:
2023-12-13 - 期刊:
- 影响因子:0
- 作者:
Hesam Mojtahedi;Feng Liao;Yang Zheng - 通讯作者:
Yang Zheng
Impacts on ecological environment due to dam removal or decommissioning
大坝拆除或退役对生态环境的影响
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Yang Zheng - 通讯作者:
Yang Zheng
Promotional mechanism of La-Mn-Fe modification on activated coke for NH3-SCR of NOx at low temperatures
La-Mn-Fe改性活性焦低温NH3-SCR脱硝促进机理
- DOI:
10.1016/j.fuel.2024.132016 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:7.4
- 作者:
Rui Li;Tao Yue;Yang Zheng;Guoliang Li;Jiajia Gao;Yali Tong;Jiaqing Wang;Mengying Ma;Wei Su - 通讯作者:
Wei Su
Design of novel CSA analogues as potential safeners and fungicides.
作为潜在安全剂和杀菌剂的新型 CSA 类似物的设计。
- DOI:
10.1016/j.bmcl.2014.12.085 - 发表时间:
2015-02-15 - 期刊:
- 影响因子:2.7
- 作者:
Yang Zheng;B. Liu;Zhaopin Gou;Yao Li;Xiao Zhang;Yanqing Wang;Shujing Yu;Yong;Dequn Sun - 通讯作者:
Dequn Sun
Bioaccumulation and toxicity effects of flubendiamide in zebrafish (Danio rerio)
氟虫酰胺在斑马鱼(斑马鱼)中的生物累积和毒性作用
- DOI:
10.1007/s11356-021-17868-7 - 发表时间:
2021-09-14 - 期刊:
- 影响因子:5.8
- 作者:
Zhiyuan Meng;Zhichao Wang;Xiaojun Chen;Yueyi Song;Miaomiao Teng;Tianle Fan;Yang Zheng;J. Cui;Wangjin Xu - 通讯作者:
Wangjin Xu
Yang Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Zheng', 18)}}的其他基金
CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
- 批准号:
2340713 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Continuing Grant
Matrix Decomposition for Scalable Conic Optimization with Applications to Distributed Control and Machine Learning
用于可扩展圆锥优化的矩阵分解及其在分布式控制和机器学习中的应用
- 批准号:
2154650 - 财政年份:2022
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
相似国自然基金
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
- 批准号:62306062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
- 批准号:62303488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
- 批准号:62302202
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 20.3万 - 项目类别:
Standard Grant