Group IV Semiconductors Derived From Zintl Phases
Zintl 相衍生的 IV 族半导体
基本信息
- 批准号:2350483
- 负责人:
- 金额:$ 55.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThis project, jointly funded by the Solid State and Materials Chemistry program in the Division of Materials Research and the Established Program to Stimulate Competitive Research (EPSCoR), focuses on developing extremely thin layered semiconductor materials with precise control over the arrangement of atoms in the material, on the surfaces of each layer, and the gaps between the layers. This level of control is expected to result in control over the material's optical properties, which could enable new technologies like integrated photonic circuits that use light to transport data and chips instead of electricity. Integrated photonic circuits have the potential to result in computers and mobile phones that use much less electricity and operate faster. The research is expected to advance fundamental knowledge in materials chemistry, nanotechnology, and semiconductors. It explores approaches to gaining atomically precise control over the structure of layered semiconductors, which can potentially lead to new synthetic methods for creating layered materials with properties that could benefit many different applications. The societal benefits of this project are broad ranging. Light-emitting semiconductors made from silicon and germanium can enable faster and more efficient computing that can substantially impact energy usage and also have the potential to enable new types of information technology like quantum computing. The materials are expected to have properties that will make them useful for applications outside of information science, like sensing and energy storage. The project also integrates the education and training of educators and students at regional high schools, community colleges, and public universities to broaden the participation of groups traditionally underrepresented in the technical workforce. The integrated educational plan gives this project a broad societal impact that addresses technological needs for a sustainable future and also prepares the future workforce to advance national security, prosperity, and national health.TECHNICAL SUMMARYIntegrating light-emitting components into microelectronic circuits has been a technological challenge due to stringent optical, electronic, and chemical requirements. The main goal of this project is to demonstrate a family of layered Group IV semiconductors with properties that meet these requirements. These layered Group IV semiconductors are derived from Zintl phases and have properties that could enable energy-efficient, ultrafast "integrated photonic" circuits. The goals of this project are to (1) synthesize layered silicon-germanium alloy semiconductors with controlled composition, structure, and surface chemistry, (2) determine how structure and chemistry influence optoelectronic properties using experimental characterization and density functional theory, and (3) characterize their thermal and environmental stability to assess their potential for real-world applications. Zintl phases comprised of atomically thin silicon-germanium alloy sheets separated by alkali metal ions or salts will be synthesized. The Zintl phases compounds will be deintercalated into multilayer semiconductors comprised of atomically thin sheets, with surfaces that can be functionalized to passivate surfaces and control their properties. In addition to computing, these materials are expected to have chemical and optoelectronic properties that could benefit numerous applications such as computing, sensing, and quantum information science. Integrated with the research are plans to work with high school STEM teachers and the NSF-funded IINSPIRE-LSAMP alliance to expand the future workforce by increasing participation of underrepresented groups and improving students' preparedness to contribute to advancing technologies that are important for national security, prosperity, and national health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该项目由材料研究部的固态和材料化学项目和刺激竞争研究既定项目(EPSCoR)联合资助,重点开发能够精确控制原子排列的极薄层状半导体材料在材料中、每层的表面以及层之间的间隙上。这种水平的控制预计将导致对材料光学特性的控制,从而实现新技术,例如使用光而不是电力来传输数据和芯片的集成光子电路。集成光子电路有可能使计算机和移动电话耗电量更少、运行速度更快。该研究预计将推进材料化学、纳米技术和半导体方面的基础知识。它探索了对层状半导体结构进行原子级精确控制的方法,这可能会带来新的合成方法,用于创建具有有益于许多不同应用的特性的层状材料。该项目的社会效益广泛。由硅和锗制成的发光半导体可以实现更快、更高效的计算,从而极大地影响能源使用,并且还有潜力实现量子计算等新型信息技术。这些材料预计具有使其可用于信息科学之外的应用的特性,例如传感和能量存储。该项目还整合了地区高中、社区学院和公立大学的教育工作者和学生的教育和培训,以扩大传统上在技术劳动力中代表性不足的群体的参与。综合教育计划使该项目产生了广泛的社会影响,满足了可持续未来的技术需求,并为未来的劳动力做好了准备,以促进国家安全、繁荣和国民健康。 技术摘要将发光元件集成到微电子电路中一直是一项技术挑战由于严格的光学、电子和化学要求。该项目的主要目标是展示一系列具有满足这些要求的特性的分层 IV 族半导体。这些层状 IV 族半导体源自 Zintl 相,具有可实现节能、超快“集成光子”电路的特性。该项目的目标是(1)合成具有受控成分、结构和表面化学的层状硅锗合金半导体,(2)利用实验表征和密度泛函理论确定结构和化学如何影响光电性能,以及(3)表征它们的热稳定性和环境稳定性,以评估它们在实际应用中的潜力。将合成由碱金属离子或盐分隔的原子薄硅锗合金片组成的 Zintl 相。 Zintl 相化合物将脱嵌成由原子薄片组成的多层半导体,其表面可以进行功能化以钝化表面并控制其性能。除了计算之外,这些材料预计还具有化学和光电特性,可以使计算、传感和量子信息科学等众多应用受益。与这项研究相结合的是,计划与高中 STEM 教师和 NSF 资助的 IINSPIRE-LSAMP 联盟合作,通过增加代表性不足群体的参与和提高学生的准备程度来扩大未来的劳动力队伍,从而为推进对国家安全至关重要的技术做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Panthani其他文献
Matthew Panthani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Panthani', 18)}}的其他基金
CAREER: Synthesis and Properties of Group IV Colloidal Quantum Wells
职业:IV族胶体量子阱的合成与性能
- 批准号:
1847370 - 财政年份:2019
- 资助金额:
$ 55.25万 - 项目类别:
Continuing Grant
相似国自然基金
II-IV-V2半导体原子无序和有序排列规律及其性质调控的计算研究
- 批准号:12304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IV(B)族半导体表面金属化及氮物种转移机制构建的可见-近红外光驱动合成氨体系研究
- 批准号:22309071
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
亚稳IV-VI族半导体纳米晶晶内锚固甲脒基钙钛矿及其光伏性能研究
- 批准号:52202115
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变Zn-IV-N2族半导体量子点异质结构电子-声子相互作用及光电性质
- 批准号:12164033
- 批准年份:2021
- 资助金额:37 万元
- 项目类别:地区科学基金项目
基于石墨烯-IV族半导体肖特基结的实空间转移晶体管研究
- 批准号:62074150
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:面上项目
相似海外基金
Voltage-controlled mid-infrared and long-infrared thermal emission using the emerging narrow-bandgap group IV semiconductors GeSn
使用新兴窄带隙 IV 族半导体 GeSn 进行压控中红外和长红外热发射
- 批准号:
557473-2021 - 财政年份:2022
- 资助金额:
$ 55.25万 - 项目类别:
Postdoctoral Fellowships
Voltage-controlled mid-infrared and long-infrared thermal emission using the emerging narrow-bandgap group IV semiconductors GeSn
使用新兴窄带隙 IV 族半导体 GeSn 进行压控中红外和长红外热发射
- 批准号:
557473-2021 - 财政年份:2021
- 资助金额:
$ 55.25万 - 项目类别:
Postdoctoral Fellowships
Optical injection of spin current in direct bandgap group IV semiconductors
直接带隙 IV 族半导体中自旋电流的光学注入
- 批准号:
563938-2021 - 财政年份:2021
- 资助金额:
$ 55.25万 - 项目类别:
University Undergraduate Student Research Awards
Fabrication of Direct Bandgap Group-IV Semiconductors by Utilizing Sn Alloying Technique Based on Rapid Melting Growth and Its Electrical Characterization
基于快速熔融生长的Sn合金化直接带隙IV族半导体及其电学表征
- 批准号:
19K15035 - 财政年份:2019
- 资助金额:
$ 55.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Heavy group III, IV, and V elements triangular lattice atomic layers on semiconductor surfaces - a new kind of 2D Dirac materials
半导体表面重III、IV、V族元素三角晶格原子层——一种新型二维狄拉克材料
- 批准号:
18K04941 - 财政年份:2018
- 资助金额:
$ 55.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)