Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
基本信息
- 批准号:2348891
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The absolute Galois group Gal(Q) is well-known throughout mathematics. Its elements are precisely the symmetries of the algebraic closure of the rational numbers. In practice, though, this group is particularly difficult to study. There are continuum-many of these symmetries, most of which cannot be computed by any computer (or Turing machine) running any finite-length program whatsoever. However, the symmetries that mathematicians encounter on a regular basis are essentially always computable -- perhaps because these are fundamental to the group, or perhaps just because noncomputable symmetries are naturally more difficult to examine and work with. This project aims to determine just how much difference there is between the computable symmetries (as a group) and the larger group of all symmetries. The research work lies at the interface of logic and number theory and is likely to attract the interest of both communities. Graduate students from CUNY Graduate Center will participate in this project. An analogous situation exists with the field of all real numbers: only countably many real numbers have computable decimal expansions, so the vast majority of real numbers are noncomputable, yet the computable ones are the only ones ever encountered in daily life. Here, it is known that the computable real numbers form a subfield extremely similar to the full field of all real numbers, an elementary subfield with exactly the same first-order properties. This grant will fund research to attempt to determine whether Gal(Q) is analogous in this way: do the computable symmetries form an elementary subgroup of the full group? (Or, at a minimum, are the two elementarily equivalent?) If so, then mathematicians should be able to determine many results about the full group just by examining the computable symmetries, which are far more accessible. If not, that would suggest that the absolute Galois group is a thornier object than the field of real numbers, with its noncomputable symmetries somehow essential to its character. However, even then, it is possible that the subgroup might be elementary for relatively simple properties (e.g., purely existential statements about the group), in which case this project will attempt to find the first level at which the subgroup stops imitating the full group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
绝对的Galois组GAL(Q)在整个数学中都是众所周知的。 它的元素恰恰是理性数字的代数关闭的对称性。 但是,实际上,这个小组特别难以研究。 这些对称性有许多连续的对称性,其中大多数无法由运行任何有限长度程序的任何计算机(或图灵机)计算。 但是,数学家定期遇到的对称性基本上是可以计算的 - 也许是因为这些对群体至关重要,或者仅仅是因为不合格的对称性自然更难以检查和工作。 该项目旨在确定可计算对称性(作为一个组)和所有对称组的较大组之间有多大差异。研究工作在于逻辑和数理论的界面,很可能会吸引两个社区的兴趣。来自CUNY研究生中心的研究生将参加该项目。与所有实际数字的领域相似:只有许多实数具有可计算的小数扩展,因此绝大多数实数都是不可归计的,但是可计算的数字是日常生活中唯一遇到的次数。 在这里,众所周知,可计算的实数形成一个与所有实数的完整字段极为相似的子字段,该字段是具有完全相同的一阶属性的基本子场。该赠款将资助研究以尝试确定GAL(Q)是否以这种方式相似:可计算对称性是否形成了整个组的基本亚组? (或者,至少是两个基本等效的吗?)如果是这样,那么数学家应该能够通过检查可计算的对称性来确定有关完整组的许多结果,这些对称性更容易访问。 如果不是这样,那将表明绝对的Galois群是一个比实数领域的棘手对象,其不可归结的对称性对其性格必不可少。 但是,即使到那时,子组也可能是相对简单的属性(例如,纯粹的存在的陈述)是基本的,在这种情况下,该项目将试图找到第一个子组停止模仿完整组的第一个级别。该奖项反映了NSF的法定任务,并通过评估了基金会的智力效果,并通过评估了基金会的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Miller其他文献
BIG DATA ON THE HEALTH AND WELFARE OF INTERNATIONAL MIGRANTS: THE NEXT STEP IN UNDERSTANDING THE MIGRANT EXPERIENCE IN JAPAN?
关于国际移民健康和福利的大数据:了解日本移民经历的下一步?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller - 通讯作者:
Russell Miller
Mutual aid as a bridge: a rapid realist review of migrant inclusion in the Japanese response to the COVID-19 pandemic
互助作为桥梁:对日本应对 COVID-19 大流行的移民包容性进行快速现实主义审查
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller - 通讯作者:
Russell Miller
Heuristics-enhanced dead-reckoning (HEDR) for accurate position tracking of tele-operated UGVs
启发式增强航位推算 (HEDR),用于遥控 UGV 的精确位置跟踪
- DOI:
10.1117/12.850301 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
J. Borenstein;A. Borrell;Russell Miller;David W. Thomas - 通讯作者:
David W. Thomas
Monitoring health equity for foreign nationals in Japan: where is the big data?
监测在日外国人的健康公平性:大数据在哪里?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller;神馬征峰;Russell Miller;Russell Miller - 通讯作者:
Russell Miller
Inclusion of Migrants in the Japanese Response to COVID-19
将移民纳入日本应对 COVID-19 的措施中
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller;神馬征峰;Russell Miller;Russell Miller;Russell Miller - 通讯作者:
Russell Miller
Russell Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Miller', 18)}}的其他基金
Conference: Travel Awards to Attend the Twentieth Latin American Symposium on Mathematical Logic
会议:参加第二十届拉丁美洲数理逻辑研讨会的旅行奖
- 批准号:
2414907 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Nineteenth Latin American Symposium on Mathematical Logic
第十九届拉丁美洲数理逻辑研讨会
- 批准号:
2212620 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Student Travel Support to Attend the North American Annual and European Summer Meetings of the Association For Symbolic Logic
学生参加符号逻辑协会北美年会和欧洲夏季会议的旅行支持
- 批准号:
1935558 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
The Eighteenth Latin American Symposium on Mathematical Logic
第十八届拉丁美洲数理逻辑研讨会
- 批准号:
1947015 - 财政年份:2019
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Mid-Atlantic Mathematical Logic Seminar
大西洋中部数理逻辑研讨会
- 批准号:
1834219 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Computability Theory, Facing Outwards
可计算性理论,面向外
- 批准号:
1362206 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Student Travel Awards to Attend the North American Annual and European Summer Meetings of the ASL
参加 ASL 北美年会和欧洲夏季会议的学生旅行奖
- 批准号:
1317262 - 财政年份:2013
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Computability Theory, Facing Outwards
可计算性理论,面向外
- 批准号:
1001306 - 财政年份:2010
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Instructional Scientific Equipment Program
教学科学设备计划
- 批准号:
7511376 - 财政年份:1975
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
相似国自然基金
基于耦合谐振的亚帕级分辨力高精度绝对微压传感机理及关键技术
- 批准号:52305575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大动态范围高速激光干涉绝对测量的研究
- 批准号:62305265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光波合成中阿秒精度的光脉冲绝对延时直接测量
- 批准号:62305377
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
含有绝对值结构优化问题的理论与算法研究
- 批准号:12371304
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于气体直接探测的222Rn/220Rn活度浓度绝对测量技术研究
- 批准号:12375319
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2019
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
The Absolute Grothendieck Conjecture and Related Topics
绝对格洛腾迪克猜想及相关主题
- 批准号:
19J10214 - 财政年份:2019
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Model theory of absolute Galois groups with a view towards arithmetic geometry
算术几何视角下的绝对伽罗瓦群模型论
- 批准号:
2099876 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Studentship