Computability Theory, Facing Outwards

可计算性理论,面向外

基本信息

  • 批准号:
    1362206
  • 负责人:
  • 金额:
    $ 11.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

In this project, the PI Russell Miller will continue his work using computability theory to analyze the difficulty of problems in other areas of mathematics. These areas include field theory, commutative and differential algebra, model theory, and number theory, as well as the possibility of describing uncountable structures and studying them effectively. Traditional computability theory examines the capabilities of digital computers and the limits on the problems which can be solved using such computers. Since the pioneering work of Alan Turing, it has been known that many problems cannot be solved by any digital computer running any program whatsoever. Even these "noncomputable" problems can be ranked by difficulty, however: problem A is easier (or at least, no more difficult) than problem B if we can show how a hypothetical program solving B would allow us to solve A as well. Indeed, in certain cases we can learn whether a particular problem is computable or not by determining where related noncomputable problems sit in this hierarchy. Recently, the PI has made contributions ranging from solutions to concrete problems about deciding whether certain polynomial equations can be satisfied using rational numbers, to more abstract questions about the difficulty of solving algebraic differential equations and the relative difficulty of considering structures from different areas of mathematics.The PI recently collaborated with several number theorists to produce new evidence for the undecidability of Hilbert's Tenth Problem for the rational numbers, the problem which asks for an algorithm to decide which Diophantine equations have rational solutions. He plans to continue this work, considering the specific question of subrings of the rationals of density 0 (i.e., "very close" to the integers). In field theory, he has made substantial progress, both by asking and answering natural computable-model-theoretic questions about the difficulty of computing isomorphisms between fields, and also by using computability theory to answer general questions about the complexity of fields in relation to the complexity of other mathematical structures. He hopes to address a key question in differential algebra, whose solution would help mathematicians better understand differentially closed fields and solutions to differential equations. (These are analogous to algebraically closed fields, but are much less well understood at present.) For some years now he has taken the lead in introducing computability techniques to researchers throughout mathematics, and has often been able to interest such people in his questions and his methods. With this grant, those efforts will most certainly continue.
在这个项目中,Pi Russell Miller将使用计算理论继续他的工作,以分析其他数学领域的问题的难度。 这些领域包括现场理论,交换和差异代数,模型理论和数理论,以及描述无数结构并有效研究它们的可能性。 传统的计算理论研究了数字计算机的功能以及可以使用此类计算机解决的问题的限制。 自艾伦·图灵(Alan Turing)开创性的工作以来,众​​所周知,运行任何程序的任何数字计算机都无法解决许多问题。 但是,即使这些“不合格”的问题也可以通过困难来排名:问题a比问题B更容易(或者至少不困难),如果我们可以展示如何解决B的B型计划也可以使我们也可以解决A。 实际上,在某些情况下,我们可以通过确定在此层次结构中确定相关的不合格问题位置来了解特定问题是否可以计算。 最近,PI做出了从解决方案到具体问题的贡献,都可以使用理性数字来确定某些多项式方程,再到有关解决代数微分方程的难度的更抽象的问题,以及考虑从不同数学领域的结构的相对难度。 他计划继续这项工作,考虑到密度0(即“非常接近”整数的“密度”)的特定问题。 在现场理论中,他通过询问和回答有关田间计算难度的自然可计算模型理论问题以及通过使用计算性理论来回答有关田野相对于领域相对于田间复杂性的一般性问题来取得了重大进展。其他数学结构的复杂性。他希望在差异代数中解决一个关键问题,该方案将帮助数学家更好地理解差异化的领域和差分方程的解决方案。 (这些类似于代数封闭的字段,但目前还不太了解。)几年来,他一直在为整个数学中的研究人员引入可计算性技术,并且经常能够使这些人在他的问题和问题中引起人们的兴趣他的方法。 有了这笔赠款,这些努力肯定会继续下去。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Miller其他文献

Modeling Di ff usive Mixing in Antisolvent Crystallization
反溶剂结晶中的扩散混合建模
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Russell Miller;J. Sefcik;Leo Lue
  • 通讯作者:
    Leo Lue
Monitoring health equity for foreign nationals in Japan: where is the big data?
监测在日外国人的健康公平性:大数据在哪里?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller;神馬征峰;Russell Miller;Russell Miller
  • 通讯作者:
    Russell Miller
Inclusion of Migrants in the Japanese Response to COVID-19
将移民纳入日本应对 COVID-19 的措施中
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller;神馬征峰;Russell Miller;Russell Miller;Russell Miller
  • 通讯作者:
    Russell Miller
BIG DATA ON THE HEALTH AND WELFARE OF INTERNATIONAL MIGRANTS: THE NEXT STEP IN UNDERSTANDING THE MIGRANT EXPERIENCE IN JAPAN?
关于国际移民健康和福利的大数据:了解日本移民经历的下一步?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller
  • 通讯作者:
    Russell Miller
Mutual aid as a bridge: a rapid realist review of migrant inclusion in the Japanese response to the COVID-19 pandemic
互助作为桥梁:对日本应对 COVID-19 大流行的移民包容性进行快速现实主义审查
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller
  • 通讯作者:
    Russell Miller

Russell Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Miller', 18)}}的其他基金

Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
  • 批准号:
    2348891
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Conference: Travel Awards to Attend the Twentieth Latin American Symposium on Mathematical Logic
会议:参加第二十届拉丁美洲数理逻辑研讨会的旅行奖
  • 批准号:
    2414907
  • 财政年份:
    2024
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Nineteenth Latin American Symposium on Mathematical Logic
第十九届拉丁美洲数理逻辑研讨会
  • 批准号:
    2212620
  • 财政年份:
    2022
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Student Travel Support to Attend the North American Annual and European Summer Meetings of the Association For Symbolic Logic
学生参加符号逻辑协会北美年会和欧洲夏季会议的旅行支持
  • 批准号:
    1935558
  • 财政年份:
    2020
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
The Eighteenth Latin American Symposium on Mathematical Logic
第十八届拉丁美洲数理逻辑研讨会
  • 批准号:
    1947015
  • 财政年份:
    2019
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Mid-Atlantic Mathematical Logic Seminar
大西洋中部数理逻辑研讨会
  • 批准号:
    1834219
  • 财政年份:
    2018
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Student Travel Awards to Attend the North American Annual and European Summer Meetings of the ASL
参加 ASL 北美年会和欧洲夏季会议的学生旅行奖
  • 批准号:
    1317262
  • 财政年份:
    2013
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Continuing Grant
Computability Theory, Facing Outwards
可计算性理论,面向外
  • 批准号:
    1001306
  • 财政年份:
    2010
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant
Instructional Scientific Equipment Program
教学科学设备计划
  • 批准号:
    7511376
  • 财政年份:
    1975
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Standard Grant

相似国自然基金

面向应急通信的移动信息网络弹性适变理论与方法
  • 批准号:
    62341103
  • 批准年份:
    2023
  • 资助金额:
    150 万元
  • 项目类别:
    专项基金项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
  • 批准号:
    62371081
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向无人机视觉定位的遥感影像多尺度时空融合匹配理论与方法
  • 批准号:
    62301063
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向大规模强化学习任务的预测控制理论与方法研究
  • 批准号:
    62376179
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向双结构光系统中的多路径效应理论研究及其实时动态三维重建
  • 批准号:
    52305561
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RISE Study ("Resist, Intervene, Support, Empower"): Feasibility/Acceptability of MHealth Intervention targeting Transgender Women facing gender-based violence and mental health disorders in Brazil
RISE 研究(“抵抗、干预、支持、赋权”):针对巴西面临性别暴力和精神健康障碍的跨性别妇女的 MHealth 干预措施的可行性/可接受性
  • 批准号:
    9978227
  • 财政年份:
    2020
  • 资助金额:
    $ 11.23万
  • 项目类别:
RISE Study ("Resist, Intervene, Support, Empower"): Feasibility/Acceptability of MHealth Intervention targeting Transgender Women facing gender-based violence and mental health disorders in Brazil
RISE 研究(“抵抗、干预、支持、赋权”):针对巴西面临性别暴力和精神健康障碍的跨性别妇女的 MHealth 干预措施的可行性/可接受性
  • 批准号:
    10237170
  • 财政年份:
    2020
  • 资助金额:
    $ 11.23万
  • 项目类别:
Examination of conceptualization and adaptability of integration of other-oriented motive and self-oriented motive based on goal hierarchy theory
基于目标层次理论的他人动机与自我动机整合的概念化及适应性检验
  • 批准号:
    16K04313
  • 财政年份:
    2016
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Surfaces of the Lorentzian from the viewpoint of singularity theory
奇点理论视角下的洛伦兹曲面研究
  • 批准号:
    15K17548
  • 财政年份:
    2015
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Building of the world history education reform model by analyzing and assessing of the world history educational theory in the United States
分析评价美国世界历史教育理论构建世界历史教育改革模式
  • 批准号:
    15H05404
  • 财政年份:
    2015
  • 资助金额:
    $ 11.23万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了