Absolute Galois groups and Massey products

绝对伽罗瓦群和梅西积

基本信息

  • 批准号:
    RGPIN-2017-05344
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Almost 200 years ago, E. Galois discovered a brilliant idea to study symmetries as one object, and in this way to solve fundamental and seemingly intractable problems related to given mathematical structures. Today Galois theory is a central part of current mathematics, and is also found in some parts of physics and chemistry. However some basic problems in Galois theory are still open. There are many different symmetries of polynomial equations. It is a daunting task to study them. Yet there are assemblies of many of them which are known as absolute Galois groups, which gives us hope to find a pattern. If we could find the structures and basic properties of absolute Galois groups, we could possibly solve a number of fundamental problems of solving equations, further problems in algebra and geometry, topology, physics, cryptography; and problems with large data systems. However, absolute Galois groups are deep, fundamental and mysterious objects, and it is hard to tackle them. Some of the best mathematicians in the past; mathematicians such as E. Artin and O. Schreier in the 1930s, and more recently in the last 40 years, J. Milnor, A. Merkurjev, M. Rost, A. Suslin, V. Voevodsky, and others; found remarkable, deep properties of absolute Galois groups encoded in cohomological invariants. In particular they solved the Bloch-Kato conjecture. It is a great challenge to well understand the meaning of this progress for the structural properties of absolute Galois groups themselves. Very recently a new, fresh, innovative road was opened up with two new conjectures related to Massey products, which were originally introduced by topologists. It has turned out that some classical and new ideas used in topology and physics, related to the shape of figures like knots, work extraordinarily well in an algebraic setting leading to remarkable new insights. Based on previous work, including the work of W. Dwyer, M. Hopkins and K. Wickelgren, I. Efrat and J. Minc; together with N. D. Tân we formulated the n-Massey vanishing conjecture and the kernel conjecture. These conjectures have already led to a flurry of activity, new results, new insights, and new hopes. Thus together with N. D. Tân and various other collaborators, we now have an exciting program with the first very encouraging results for deducing the fundamental properties of the absolute Galois groups related to solving these conjectures, and at the same time bringing more light to a possible refinement of the Bloch-Kato conjecture. Studies of number theory and algebraic groups in Canada are very well-regarded internationally. The results of these studies have implications throughout the whole spectrum of current mathematics and significant parts of physics, chemistry and industry. It is hoped that this project will contribute to sustaining this high standard and tradition in Canada.
大约 200 年前,E. Galois 发现了一个绝妙的想法,将对称性作为一个对象进行研究,并通过这种方式解决与给定数学结构相关的基本且看似棘手的问题。然而,伽罗瓦理论中的一些基本问题仍然存在,研究它们中的许多不同的对称性是一项艰巨的任务。它们被称为绝对伽罗瓦群,这给我们找到一种模式带来了希望。如果我们能够找到绝对伽罗瓦群的结构和基本性质,我们就有可能解决许多求解方程的基本问题,以及代数和几何中的进一步问题。 、拓扑、物理、密码学;以及大数据系统的问题。 然而,绝对伽罗瓦群是深刻的、基本的和神秘的对象,过去一些最好的数学家(例如 20 世纪 30 年代的 E. Artin 和 O. Schreier)很难解决它们。 40 年来,J. Milnor、A. Merkurjev、M. Rost、A. Suslin、V. Voevodsky 等人发现了绝对伽罗瓦群的显着而深刻的性质;特别是,他们解决了布洛赫-加藤猜想。 要很好地理解这一进展对于绝对伽罗瓦群本身的结构性质的意义是一个巨大的挑战。 最近,与拓扑学家最初提出的两个与梅西积有关的新猜想开辟了一条新的、新鲜的、创新的道路。事实证明,拓扑学和物理学中使用的一些经典和新的想法与图形的形状有关。就像结一样,在代数环境中工作得非常好,从而带来非凡的新见解。 基于之前的工作,包括 W. Dwyer、M. Hopkins 和 K. Wickelgren、I. Efrat 和 J. Minc 以及 N. D. Tân,我们已经提出了 n-Massey 消失猜想和核猜想。带来了一系列的活动、新成果、新见解和新希望。 因此,与 N. D. Tân 和其他各种合作者一起,我们现在有了一个令人兴奋的计划,并取得了第一个非常令人鼓舞的结果,用于推导与解决这些猜想相关的绝对伽罗瓦群的基本属性,同时为可能的改进带来更多启发布洛赫-加藤猜想。 加拿大的数论和代数群研究在国际上广受好评,这些研究的结果对当前数学的整个领域以及物理、化学和工业的重要部分都有影响。加拿大的高标准和传统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minac, Jan其他文献

Algebraic approach to the Kuramoto model
  • DOI:
    10.1103/physreve.104.l022201
  • 发表时间:
    2021-08-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Muller, Lyle;Minac, Jan;Nguyen, Tung T.
  • 通讯作者:
    Nguyen, Tung T.

Minac, Jan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minac, Jan', 18)}}的其他基金

Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
  • 批准号:
    41981-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Sylow-p subgroups of absolute galois groups, representation theory, and galois cohomology
绝对伽罗瓦群的 Sylow-p 子群、表示论和伽罗瓦上同调
  • 批准号:
    41981-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Hopf-Galois代数及其附加结构的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
线性码的广义pair重量、Galois对偶及相关问题研究
  • 批准号:
    12271199
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
用代数方法研究Galois自对偶码的构造和表示问题
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Theta对应与Galois周期
  • 批准号:
    11971223
  • 批准年份:
    2019
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
某些Rapoport-Zink空间的上同调与模p Langlands纲领
  • 批准号:
    11901331
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Model theory of absolute Galois groups with a view towards arithmetic geometry
算术几何视角下的绝对伽罗瓦群模型论
  • 批准号:
    2099876
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Studentship
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
  • 批准号:
    RGPIN-2017-05344
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了