Ultrafast Dephasing of Strongly Coupled Plasmon-Exciton States

强耦合等离子体激子态的超快相移

基本信息

  • 批准号:
    2304905
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-15 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Structure, Dynamics, and Mechanisms A (CSDM-A) program in the Division of Chemistry, Professors Gregory Hartland and Masaru Kuno of the University of Notre Dame are using optical microscopy to study the propagation of exciton-plasmon polaritons in individual semiconductor-metal nanostructures. Polaritons are unusual states that are produced by coupling the surface plasmons created by optical excitation in metals to the excited states of molecules or semiconductors. Polaritons have very short lifetimes and move very quickly, making them difficult to study using conventional techniques. Professors Hartland, Kuno and their students will use sophisticated light scattering and ultrafast microscopy techniques to measure the lifetimes of exciton-plasmon polaritons, as well as the distances they travel along individual semiconductor-metal nanostructures. Discoveries from this project could lead to a better understanding of the properties of polaritons in nanomaterials, and new strategies for solar energy generation. High school teachers and students will be recruited for this project from the Penn-Harris-Madison School Corporation, a local school district with a population of approximately 12,000 students. They will participate in the light scattering experiments, as well as a proect to develop a low-cost microscope for detecting and characterizing microplastics in the environment. The project will contribute to the development of the Nation's scientific workforce in this way as well as by providing research opportunities for graduate and undergraduate students. To understand the properties of exciton-plasmon polaritons, and whether they can be used for applications such as solar energy conversion, it is important to understand their dynamics. Because the lifetimes of these states are typically very short (100 fs), they are challenging to measure. In this project the lifetimes of polariton states created by coupling propagating surface plasmons (PSPs) of single metal nanostructures to the exciton transitions of semiconductors will be investigated by light scattering and ultrafast transient absorption microscopy. In the light scattering experiments a combination of real space and back-focal plane imaging will be used to measure the propagation lengths and group velocities, respectively, of the exciton-PSP polariton states. These two quantities give the polariton lifetime. Importantly, these experiments can be used to interrogate systems with very short lifetimes. For systems where the dynamics are relatively slow (50-100 fs), the lifetimes will also be directly measured by ultrafast single-particle transient absorption experiments. Measurements will be performed for different semiconductors coupled to Ag or Au nanostructures, as well as for non-traditional plasmonic systems, such as titanium nitride (TiN). There are several technological broader impacts of the proposed work. For example, the propagation lengths for SPPs (surface plasmon polarities) are much longer than those for exciton states. Thus, coupling excitons to SPPs can significantly increase their propagation lengths, and potentially improve the performance of solar energy conversion devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理 A (CSDM-A) 项目的支持下,圣母大学的 Gregory Hartland 教授和 Masaru Kuno 教授正在使用光学显微镜研究激子-等离子体激元极化激元的传播单个半导体金属纳米结构。 极化子是一种不寻常的状态,是通过将金属中的光激发产生的表面等离子体与分子或半导体的激发态耦合而产生的。 极化子的寿命非常短并且移动速度非常快,因此很难使用传统技术对其进行研究。 Hartland、Kuno 教授和他们的学生将使用复杂的光散射和超快显微镜技术来测量激子-等离子体激元的寿命,以及它们沿着单个半导体-金属纳米结构行进的距离。 该项目的发现可以使人们更好地了解纳米材料中极化激元的特性以及太阳能发电的新策略。 该项目将从宾州哈里斯麦迪逊学校公司招募高中教师和学生,该学校是当地学区,约有 12,000 名学生。 他们将参与光散射实验,以及开发用于检测和表征环境中微塑料的低成本显微镜的项目。该项目将以这种方式为国家科学劳动力的发展做出贡献,并为研究生和本科生提供研究机会。 为了了解激子-等离激元极化激元的特性,以及它们是否可用于太阳能转换等应用,了解它们的动力学非常重要。 由于这些状态的寿命通常非常短(100 fs),因此测量它们具有挑战性。 在该项目中,将通过光散射和超快瞬态吸收显微镜来研究通过将单一金属纳米结构的传播表面等离子体(PSP)与半导体的激子跃迁耦合而产生的极化子态的寿命。 在光散射实验中,将使用真实空间和后焦平面成像的组合来分别测量激子-PSP极化子态的传播长度和群速度。 这两个量给出了极化子的寿命。 重要的是,这些实验可用于询问寿命非常短的系统。 对于动力学相对较慢(50-100 fs)的系统,寿命也将通过超快单粒子瞬态吸收实验直接测量。 将对与 Ag 或 Au 纳米结构耦合的不同半导体以及非传统等离子体系统(例如氮化钛 (TiN))进行测量。 拟议的工作有几个更广泛的技术影响。例如,SPP(表面等离子体极性)的传播长度比激子态的传播长度长得多。因此,将激子耦合到 SPP 可以显着增加其传播长度,并有可能提高太阳能转换器件的性能。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Hartland其他文献

Gregory Hartland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Hartland', 18)}}的其他基金

Mass Sensing, Strong Vibrational Coupling and Super-Resolution Imaging of Noble Metal Nanostructures
贵金属纳米结构的质量传感、强振动耦合和超分辨率成像
  • 批准号:
    2002300
  • 财政年份:
    2020
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Super Resolution THz Imaging of Nanostructures
纳米结构的超分辨率太赫兹成像
  • 批准号:
    1902403
  • 财政年份:
    2019
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Transient absorption microscopy studies of the dynamics of single metal and semiconductor nanostructures
单金属和半导体纳米结构动力学的瞬态吸收显微镜研究
  • 批准号:
    1502848
  • 财政年份:
    2015
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Charge carrier relaxation and energy dissipation in one-dimensional nanostructures
一维纳米结构中的载流子弛豫和能量耗散
  • 批准号:
    1110560
  • 财政年份:
    2011
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Correlated Time-Resolved Spectroscopy and Structural Studies of Single Metal Particles
单金属颗粒的相关时间分辨光谱和结构研究
  • 批准号:
    0647444
  • 财政年份:
    2007
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Material Properties of Nanospheres and Nanorods Studied by Time-Resolved Spectroscopy
通过时间分辨光谱研究纳米球和纳米棒的材料特性
  • 批准号:
    0236279
  • 财政年份:
    2003
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Experimental Study of Dynamics in Confined Environments
密闭环境动力学实验研究
  • 批准号:
    9816164
  • 财政年份:
    1999
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于四相耦合模拟的河流微塑料运移机制研究
  • 批准号:
    52309086
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
不同演化阶段陆相页岩微-纳米孔隙连通性及其流体运移响应机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于离散移相调制的嵌入式锂电池宽频带阻抗测量方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
物理感知神经网络与输移扩散模型相耦合的滨海核电温排水模拟
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
溶质羽流在多孔介质非互溶两相流中强化运移现象的机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study of photo-induced phase transitions in strongly correlated systems by extraction of important degrees of freedom using randomized singular value decomposition
通过使用随机奇异值分解提取重要自由度来研究强相关系统中的光致相变
  • 批准号:
    23K03281
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing first-principles method for strongly interacting phonons and its application to exotic phenomena
开发强相互作用声子的第一原理方法及其在奇异现象中的应用
  • 批准号:
    22KJ1028
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Theoretical study on doping-induced electronic states originating from spin-charge separation of strongly correlated insulators
强相关绝缘体自旋电荷分离引起的掺杂诱导电子态的理论研究
  • 批准号:
    22K03477
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology and quantum phase transitions in strongly correlated open quantum systems
强相关开放量子系统中的拓扑和量子相变
  • 批准号:
    21K03401
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了