CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields

职业:空间不均匀电场中的交流电泳

基本信息

  • 批准号:
    2340925
  • 负责人:
  • 金额:
    $ 51.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

Electrolytes are charged ions and molecules such as sodium, lithium, and potassium hydroxide that conduct electricity. Applying an alternating current (AC) electric field to electrolytes in a solution causes them to migrate because of their charge properties. This phenomenon is used in many important applications, including supercapacitors, high-rate batteries, and cellular and biomolecular manipulation like cell sorting. AC electric fields can be regular waves of alternating voltage (spatially uniform) or less predictable, irregular waves (spatially non-uniform). Scientists have assumed that applying AC voltages to an electrolyte solution encourages the electrolytes to migrate in a way that does not affect the overall bulk solution properties. However, recent research studies revealed that electrolyte bulk solution properties change when a spatially non-uniform AC electric field is applied. Effects such as flow reversal, pH shifts, solution osmotic pressure change, and the generation of ion concentration gradients were observed. This project’s objective is to understand how electrolytes and other charged particles respond to spatially non-uniform AC electric fields in bulk solutions over extended periods. This fundamental knowledge can be applied to develop novel technologies for molecular biosensing, water desalination, and high-throughput drug screening assays. The project will also support STEM outreach and educational activities. It aims to develop industrially relevant skillsets for graduate and undergraduate students through interactions with industrial leaders and industry-informed student projects. The investigator also aims to cultivate interest in STEM education and technology-driven solutions to enhance healthcare and societal well-being among high school students from underserved communities.This project will test the hypothesis that the biased AC electromigration under spatially non-uniform AC electric fields facilitates the directed enrichment and generation of concentration gradients of biochemically relevant charged species in bulk aqueous phase and biofluids. The specific research objectives are to (A) engineer a new system for isolating confounding variables from biased AC electromigration, (B) interrogate the influence of spatially non-uniform AC electric field properties on biased AC electromigration behaviors of designated charged species, and (C) elucidate the influence of charged species’ intrinsic properties on their biased AC electromigration behavior under designated spatially non-uniform AC electric fields. This project will provide a fundamental understanding of the behaviors of charged species under spatially non-uniform AC electric fields in the bulk solution beyond the electric double layer and at longer times than previously studied (60 seconds). This fundamental understanding of biased AC electromigration is broadly relevant to many scientific communities; it can be applied to develop technologies that (1) selectively enrich or deplete biomolecules, which will improve the sensitivity and accuracy of biosensing by allowing the detection of concentrations of target molecules that are otherwise below detection limits and (2) generate spatially and temporally controllable and quantifiable two- and three-dimensional gradients.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电解质是带电的离子和分子,例如导电的钠,锂和氢氧化钾。将替代电流(AC)电场应用于溶液中的电解质会导致它们由于电荷特性而迁移。这种现象用于许多重要的应用,包括超级电容器,高速电池,以及细胞和二分子的操纵(例如细胞分类)。交流电场可以是替代电压(空间均匀)的常规波,也可以是不可预测的不规则波(在空间不均匀)的情况下。科学家已经假设,将AC电压应用于电解质溶液会鼓励电解质以不影响整体散装溶液特性的方式迁移。然而,最近的研究表明,当应用空间不均匀的交流电场时,电解质大块溶液的特性会发生变化。观察到诸如流动逆转,pH值,溶液渗透压变化和离子浓度梯度的产生之类的效果。该项目的目标是了解较长时期内的电解质和其他带电颗粒如何在散装溶液中对空间不均匀的AC电场做出反应。这种基本知识可以应用于开发用于分子生物传感,水的脱盐和高通量药物筛查测定法的新技术。该项目还将支持STEM外展和教育活动。它旨在通过与工业领导者和知名的学生项目进行互动,为研究生和本科生开发与工业相关的技能。该研究者还旨在培养对STEM教育和技术驱动的解决方案的兴趣,以增强来自服务不足社区的高中生的医疗保健和社会福祉。该项目将检验以下假设:在空间非均匀的AC电场下,有偏见的AC电气移民支持了BioChemected exepers exem and themected ceneper and Bulked and bulked and bulked and and andected and and and and to and to and的非均匀AC电场。 The specific research objectives are to (A) engineer a new system for isolating confounding variables from biased AC electromigration, (B) interrogate the influence of spatially non-uniform AC electric field properties on biased AC electromigration behaviors of designated charged species, and (C) elucidate the influence of charged species’ intrinsic properties on their biased AC electromigration behavior under designated spatially non-uniform AC electric字段。该项目将在散装溶液中的空间不均匀的AC电场下,在电动双层层以外的散装溶液中,比以前研究的时间更长(60秒),对带电物种的行为提供了基本的理解。对有偏见的AC电气移民的这种基本理解与许多科学社区广泛相关。它可以应用于开发(1)选择性地丰富或复制生物分子的技术,这将通过允许检测目标分子的浓度来提高生物传感的敏感性和准确性,而目标分子的浓度否则低于检测限制,并且(2)在空间和暂时控制和Quiltion state stality evallore reparties and thersed and ththes and ththe sepress and evers and evers evers evers evers reforce sef sefs ys ththe sef sefs ysf sefs ysf sefs ysf sefs ysf sefs ysf sefs ysf sefs ysf sefs ysf sf。通过使用基金会的知识分子和更广泛影响的评论标准来通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ran An其他文献

Anti-corruption, government subsidies, and investment efficiency
反腐败、政府补贴和投资效率
  • DOI:
    10.1016/j.cjar.2018.12.001
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Huili Zhang;Ran An;Qinlin Zhong
  • 通讯作者:
    Qinlin Zhong
Stiffness decay characteristics and disturbance effect evaluation of structured clay based on in-situ tests
基于原位试验的结构粘土刚度衰减特性及扰动效应评价
  • DOI:
    10.1016/j.sandf.2022.101184
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ran An;Lingwei Kong;Wenzhuo Shi;Xianwei Zhang
  • 通讯作者:
    Xianwei Zhang
Mutational scanning of the CHCHD2 gene in Han Chinese patients with Parkinson's disease and meta-analysis of the literature.
中国汉族帕金森病患者CHCHD2基因突变扫描及文献荟萃分析
  • DOI:
    10.1016/j.parkreldis.2016.05.032
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinglong Yang;Quanzhen Zhao;Ran An;JinHua Zheng;Sijia Tian;Yalan Chen;Yanming Xu
  • 通讯作者:
    Yanming Xu
Synergistic Advances in Living Cationic and Radical Polymerization
活性阳离子和自由基聚合的协同进展
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ran An;Ping Dong;Makoto Komiyama;Pan;Xiaoming; Xingguo Liang;M. Kamigaito
  • 通讯作者:
    M. Kamigaito
Electroosmotic Flow Can Generate Ion Current Rectification in Nano- and
电渗流可以产生纳米级和纳米级的离子电流整流
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Micropores C. Yusko;Ran An;Michael Mayer
  • 通讯作者:
    Michael Mayer

Ran An的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ran An', 18)}}的其他基金

SBIR Phase II: Development of a Microscope to Detect Cellular Motion in Three-dimensional Tissue
SBIR 第二阶段:开发用于检测三维组织中细胞运动的显微镜
  • 批准号:
    1534699
  • 财政年份:
    2015
  • 资助金额:
    $ 51.55万
  • 项目类别:
    Standard Grant
SBIR Phase I: Development of a Microscope to Detect Cellular Motion in Three-dimensional Tissue
SBIR 第一阶段:开发用于检测三维组织中细胞运动的显微镜
  • 批准号:
    1416135
  • 财政年份:
    2014
  • 资助金额:
    $ 51.55万
  • 项目类别:
    Standard Grant

相似国自然基金

硅原子和苯环交替键联聚合物的合成、衍生化及性质
  • 批准号:
    22301082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
苏打盐碱湿地干湿交替对抗生素迁移转化的影响机制
  • 批准号:
    42301134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
干湿交替环境下秦巴山区溃散型松散堆积层滑坡变形演化机制研究
  • 批准号:
    42307221
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
北大西洋年代际海温型交替转换对东亚夏季降水的影响和可预测性研究
  • 批准号:
    42375025
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
干湿交替作用下岩溶区土壤CO2的来源特征与迁移机理
  • 批准号:
    42302287
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigation of the characteristics of alternating current nanopore measurement and establishment of the theoretical basis.
研究交流电纳米孔测量特性并建立理论基础。
  • 批准号:
    23H01417
  • 财政年份:
    2023
  • 资助金额:
    $ 51.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Transcranial alternating current stimulation to enhance language abilities
经颅交流电刺激增强语言能力
  • 批准号:
    10723719
  • 财政年份:
    2023
  • 资助金额:
    $ 51.55万
  • 项目类别:
High Voltage Alternating Current Test System
高压交流测试系统
  • 批准号:
    505072455
  • 财政年份:
    2022
  • 资助金额:
    $ 51.55万
  • 项目类别:
    Major Research Instrumentation
Optimal Protection Coordination for Hybrid Alternating Current/Direct Current Microgrids using Harmonic Injection
使用谐波注入的混合交流/直流微电网的最佳保护协调
  • 批准号:
    575353-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 51.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The effects of transcranial alternating current stimulation on neuropathic pain and resting electroencephalography after spinal cord injury.
经颅交流电刺激对脊髓损伤后神经病理性疼痛和静息脑电图的影响。
  • 批准号:
    21K17482
  • 财政年份:
    2021
  • 资助金额:
    $ 51.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了