Postdoctoral Fellowship: EAR-PF: Geomicrobiology in the Critical Zone- integrating subsurface microbial processes across spatial and temporal scales.
博士后奖学金:EAR-PF:关键区域的地球微生物学 - 跨空间和时间尺度整合地下微生物过程。
基本信息
- 批准号:2305620
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This EAR-PF project to Dr. Dawson Fairbanks, University of California-Riverside, explores the role that soil microbial communities’ diversity and functionality play in combating climate change. The work focuses on the responses of microbial communities to changing environmental conditions at a range of scales across the US and Puerto Rico. The goal is a deeper understanding of how soil responds to global change stressors and how soil types, vegetation, and climate regime influence the microbes that drive nutrient cycling in soil. Broader impacts of this work focus on education and outreach. Through lab and field-based student projects, this fellowship will train and prepare the next generation of STEM researchers. Public outreach events and science policy literature will provide information about the results of this project. The investigator will also engage policymakers through an op-ed about sustainable management practices. This project aims to understand the drivers of subsurface microbial functionality across continental scales. Subsurface microbial communities play a critical role in soil health, biogeochemical cycling, soil formation, and carbon storage, yet there is still much to learn about these communities, particularly at a continental scale. This project builds upon previous work, which identified drivers of microbial biodiversity across a continental scale, with some sites showing no change with depth and others a complete turnover of microbial communities. The goal of this project is to understand how subsoil microbial functionality differs across climate gradients and their impacts on Earth’s biogeochemical cycling. I hypothesize that soil type, hydrology, and lithology are critical to determining the depth to which surface influences such as vegetation and climate drive microbial community composition and activity. This project will use a combination of molecular techniques, including metagenomics and metatranscriptomics, to analyze the collected soil samples. I will also conduct statistical analyses to identify drivers of microbial community composition and function across different soil types, vegetation, and climate regimes. By analyzing data collected across the continental US and Puerto Rico, I aim to identify the underlying factors that determine the functional diversity of subsurface microbial communities. In order to scale the broad swath of metagenomic studies across various NSF networks, including LTER, NEON and CZNet, I will leverage data collected across networks to integrate discoveries into a larger metagenomic reference database to foster future discovery of novel taxa and functional pathways. The potential contributions of this project are significant. It will advance efforts to harmonize molecular information for microbial taxa and their functional traits, facilitating their integration with ecosystem-level data. Furthermore, it will enable future metagenomic studies to leverage environmental data, thereby stimulating further research in microbial ecology. Moreover, this project will provide valuable insights into the role of subsurface microbial communities in soil health, biogeochemical cycling, and carbon storage, which are essential for the development of sustainable management practices in the face of ongoing climate change. In summary, this project aims to deepen our understanding of the diversity and functionality of subsurface microbial communities, identify the drivers shaping these communities across different regions and depths, and elucidate their impacts on Earth's biogeochemical cycles. The findings of this project will be crucial for comprehending the effects of global change stressors on soil health and carbon storage, thus informing future sustainable management practices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加州大学河滨分校 Dawson Fairbanks 博士的 EAR-PF 项目探讨了土壤微生物群落的多样性和功能在应对气候变化中所发挥的作用。该项目的重点是微生物群落对一定范围内不断变化的环境条件的反应。目标是更深入地了解土壤如何应对全球变化压力,以及土壤类型、植被和气候状况如何影响驱动土壤养分循环的微生物。这项工作的重点是教育和推广。通过实验室和实地学生项目,该奖学金将培训和培养下一代 STEM 研究人员,而科学政策文献将提供有关该项目结果的信息。该项目还通过有关可持续管理实践的专栏来了解地下微生物群落在土壤健康、生物地球化学循环、土壤形成和碳储存中发挥的关键作用。但还有很多了解这些群落,特别是在大陆范围内,该项目建立在以前的工作基础上,该工作确定了整个大陆范围内微生物生物多样性的驱动因素,其中一些地点没有显示出随深度的变化,而另一些地点则显示出微生物群落的完全更替。该项目旨在了解地下微生物功能在不同气候梯度下的差异及其对地球生物地球化学循环的影响,我发现土壤类型、水文和岩性对于确定植被和气候等地表影响的深度至关重要。驱动微生物群落组成和活动 该项目将结合使用分子技术(包括宏基因组学和宏转录组学)来分析收集的土壤样本,我还将进行统计分析,以确定不同土壤类型、植被的微生物群落组成和功能的驱动因素。通过分析在美国大陆和波多黎各收集的数据,我的目标是确定决定地下微生物群落功能多样性的潜在因素,以便扩大各种宏基因组研究的范围。 NSF 网络,包括 LTER、NEON 和 CZNet,我将利用跨网络收集的数据将发现整合到更大的宏基因组参考数据库中,以促进未来新分类群和功能途径的发现,该项目的潜在贡献将是巨大的。协调微生物类群的分子信息及其功能特征,促进其与生态系统水平数据的整合。此外,它将使未来的宏基因组研究能够利用环境数据,从而促进微生物生态学的进一步研究。深入了解地下微生物群落在土壤健康、生物地球化学循环和碳储存中的作用,这对于面对持续的气候变化制定可持续管理实践至关重要。 总之,该项目旨在加深我们对多样性的理解。该项目的研究结果对于理解全球变化压力因素对土壤健康的影响至关重要。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dawson Fairbanks其他文献
Dawson Fairbanks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
政府奖学金是否能够提升来华留学生质量? ——基于机器学习方法的“一带一路”国家因果推断
- 批准号:
- 批准年份:2019
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Feedbacks Between Controls of Stream Dry-Down Responses at the Rain-Snow Transition
博士后奖学金:EAR-PF:雨雪转变时河流干涸响应控制之间的反馈
- 批准号:
2305601 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
- 批准号:
2305448 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Linking the past to the future: Using PETM fluvial records to understand the effects of climate change on rivers
博士后奖学金:EAR-PF:连接过去与未来:利用 PETM 河流记录了解气候变化对河流的影响
- 批准号:
2305463 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award