Analytic and geometric aspects of convexity theory with applications

凸性理论的解析和几何方面及其应用

基本信息

  • 批准号:
    RGPIN-2018-05159
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The omnipresent convexity appears naturally when describing objects of interest in many mathematical related sciences. For instance, the set of quantum states in finite dimensional quantum systems and its subset containing all separable quantum states (i.e., not entangled quantum states) are convex compact sets. Hence, understanding the analytic and/or geometric aspects of convexity theory is in great demand and is prerequisite to understanding convex objects of interest. To this end, my proposed program of research aims to study properties of convexity theory, and to apply tools from convexity theory to attack problems arising in other areas such as mathematical physics, partial differential equations, probability theory and (quantum) information theory. One part of the proposed program of research deals with the modern geometric extensions of the Brunn-Minkowski theory and its dual. The emphasis is on understanding the properties of affine invariants (e.g., affine and geominimal surface areas), establishing new affine isoperimetric and isocapacitary inequalities, and solving Minkowski type problems (e.g., the Orlicz-Minkowski problem as well as its dual and/or polar analogues). Several projects are proposed to further explore the connections of the Brunn-Minkowski theory of convex bodies and its dual with partial differential equations, with particular attention paid to geometric inequalities, (polar or dual) Minkowski type problems, and the development of a dual Brunn-Minkowski theory for various variational functionals. Another part of the proposed program of research lies in the areas of geometrization of log-concave measures (or functions) and the information theory. The geometrization of log-concave measures can be viewed as the functional analogue of the Brunn-Minkowski theory. I aim to build a framework of the functional Lp and/or Orlicz Brunn-Minkowski theories for log-concave or quasi-concave functions, extend the entropy power inequality to their Lp and/or Orlicz analogues, and discover new geometric inequalities for quantum states. It is expected that these projects help further advance the connections between information theory and the Brunn-Minkowski theory, with particular attention paid to geometric inequalities for quantum states, and the generalizations of the entropy power inequality and Fisher information (in both classical and quantum settings). I will continue my commitment to the training of (undergraduate and graduate) students and postdocs. This program of research includes multiple diverse and interdisciplinary research topics, which makes it easier to attract Highly Qualified Personnel (HQP) and helps produce knowledgeable mathematicians of next generation.
在描述许多数学相关科学中感兴趣的对象时,无所不在的凸性自然地出现。例如,有限维量子系统中的量子态集合及其包含所有可分离量子态(即非纠缠量子态)的子集是凸紧集。因此,理解凸性理论的解析和/或几何方面的需求很大,并且是理解感兴趣的凸对象的先决条件。为此,我提出的研究计划旨在研究凸性理论的性质,并应用凸性理论的工具来解决数学物理、偏微分方程、概率论和(量子)信息论等其他领域出现的问题。 拟议的研究计划的一部分涉及布伦-闵可夫斯基理论及其对偶的现代几何扩展。重点是理解仿射不变量的性质(例如仿射和几何最小表面积),建立新的仿射等周和等电容不等式,以及解决 Minkowski 类型问题(例如 Orlicz-Minkowski 问题及其对偶和/或极坐标问题)类似物)。提出了几个项目来进一步探索凸体的 Brunn-Minkowski 理论及其对偶与偏微分方程的联系,特别关注几何不等式、(极或对偶)Minkowski 型问题以及对偶 Brunn 的发展-各种变分泛函的闵可夫斯基理论。拟议研究计划的另一部分在于对数凹测度(或函数)的几何化和信息论领域。 对数凹测度的几何化可以被视为 Brunn-Minkowski 理论的功能类比。我的目标是为对数凹函数或准凹函数建立泛函 Lp 和/或 Orlicz Brunn-Minkowski 理论的框架,将熵幂不等式扩展到它们的 Lp 和/或 Orlicz 类似物,并发现量子态的新几何不等式。预计这些项目有助于进一步推进信息论和 Brunn-Minkowski 理论之间的联系,特别关注量子态的几何不等式,以及熵幂不等式和费舍尔信息的推广(在经典和量子设置中) )。我将继续致力于(本科生和研究生)学生和博士后的培训。该研究计划包括多个多样化和跨学科的研究主题,这使得更容易吸引高素质人才(HQP),并有助于培养下一代知识渊博的数学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ye, Deping其他文献

On the Bures volume of separable quantum states
Phase transitions for random states and a semicircle law for the partial transpose
  • DOI:
    10.1103/physreva.85.030302
  • 发表时间:
    2012-03-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Aubrun, Guillaume;Szarek, Stanislaw J.;Ye, Deping
  • 通讯作者:
    Ye, Deping

Ye, Deping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ye, Deping', 18)}}的其他基金

Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
"Convex Geometric Analysis, Random Matrices, and Their Applications to Quantum Information Theory"
“凸几何分析、随机矩阵及其在量子信息论中的应用”
  • 批准号:
    418296-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向大跨桥梁施工监控的激光-图像融合几何形态感知方法研究
  • 批准号:
    52308306
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于透视几何约束一致性的跨域刚体单目位姿估计
  • 批准号:
    12302252
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复流形上蒙日-安培型方程理论以及几何问题的研究
  • 批准号:
    12371078
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
轨形方法在拓扑、几何和动力系统中的应用
  • 批准号:
    12371067
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena
高维现象的分析、几何和概率方面
  • 批准号:
    1955175
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Variational problems and geometric analysis for hypersurfaces with singular points, and novel development of discrete surface theory
奇点超曲面的变分问题和几何分析以及离散曲面理论的新发展
  • 批准号:
    20H01801
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了