CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
基本信息
- 批准号:2338642
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2028-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to improve state estimation and anomaly detection problems for power system operators. The project will bring transformative changes in how operators detect the system states and abnormal events, including cyber-attacks. This will be achieved by using adaptive graph-based and physics-based methods. The intellectual merits of the project include 1) Development of spatial-temporal graph neural networks (ST-GNN) for state estimation and anomaly detection, 2) Integration of physics into the ST-GNN, 3) Correlation of IT/OT events, and 4) Development of state estimation and anomaly detection at scale. The broader impacts of the project include spurring the interests of future female engineers in sustainable energy and cyber-physical security through Clarkson's Horizons Program, supporting underrepresented undergraduates in research, enhancing collaboration between national labs and universities, and enhancing awareness of utilities through annual workshops for utility students. Timely identification and mitigation of emerging cyber-physical system (CPS) risks necessitate more sophisticated and resilient tools for state estimation and anomaly detection employed by grid operators. The primary objective of this CAREER project is to improve the state estimation and anomaly detection capabilities of power system operators through adaptive graph-based and physics-based methods. This objective will be realized through a meticulously crafted work plan aimed at (1) improving the precision and robustness of state estimation using physics-informed learning on graphs and (2) enhancing anomaly detection while achieving scalability through hybrid and distributed approaches. These goals will be pursued through four key research activities: 1) Developing spatial-temporal graph neural networks for enhanced state estimation, 2) Establishing a physics-informed framework to handle imbalanced data, 3) Integrating information technology (IT) data with operational technology (OT) data to bolster anomaly detection, and 4) Creating distributed methods for achieving scalable state estimation and anomaly detection. On the educational front, the aim is to broaden and strengthen the power engineering workforce by encouraging women to participate in the field, training the next generation of power engineers, and elevating the skills and awareness of current power engineers to effectively navigate emerging CPS threats in power system operations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF职业项目旨在改善国家估计和电力系统运营商的异常检测问题。该项目将在运营商检测系统状态和包括网络攻击在内的异常事件的方式上带来变革性的变化。这将通过使用基于自适应的基于图形和物理学的方法来实现。该项目的智力优点包括1)用于状态估计和异常检测的时空图神经网络(ST-GNN)的开发,2)将物理学整合到ST-GNN中,3)IT/OT事件的相关性和4)状态估计的发展和状态估计的发展和大规模检测。该项目的更广泛的影响包括通过克拉克森的地平线计划激发未来女性工程师对可持续能源和网络物理安全的利益,支持在研究中代表性不足的本科生,增强了国家实验室与大学之间的协作,并通过年度工作室来增强公用事业的认识。 及时识别和缓解新兴网络物理系统(CPS)风险需要更复杂和弹性的工具,以进行网格操作员采用的状态估计和异常检测。该职业项目的主要目的是通过基于自适应的基于图形和物理学的方法来提高电力系统操作员的状态估计和异常检测能力。该目标将通过精心制作的工作计划来实现,旨在(1)使用物理学上的学习在图表上提高国家估计的精度和鲁棒性,以及(2)通过混合和分布式方法来实现可伸缩性,同时增强异常检测。这些目标将通过四个关键的研究活动来实现:1)开发空间 - 周期性图神经网络以增强状态估计,2)建立一个物理知识的框架来处理不平衡数据,3)将信息技术(IT)数据与操作技术(OT)数据集成在一起,以增强型号检测的方法,并创建分配量表估计的方法,以实现量表估计。在教育方面,目的是通过鼓励妇女参与该领域,培训下一代电力工程师,提高现任电力工程师的技能和意识来有效地在电力系统运营中导致CPS威胁的能力,这反映了NSF的法定任务和范围的范围,这是通过评估的范围,这表明了范围的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tuyen Vu其他文献
Equivalent Model of Photovoltaic System Dynamics Using Neural Network
使用神经网络的光伏系统动力学等效模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rifat Hossain;S. Paudyal;Tuyen Vu - 通讯作者:
Tuyen Vu
PD14-07 REAL-TIME IMAGING DEMONSTRATING T-CELL MEDIATED DESTRUCTION OF PROSTATIC ACID PHOSPHATASE (PAP)-EXPRESSING CELLS IN PATIENTS (PTS) TREATED WITH SIPULEUCEL-T (SIP-T)
- DOI:
10.1016/j.juro.2018.02.793 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Brant Inman;Tuyen Vu;Evan Y Yu;Dwayne Campogan;Heather Haynes;Nadeem A Sheikh;Daniel George - 通讯作者:
Daniel George
PD27-04 SIPULEUCEL-T-INDUCED ANTIGEN SPREAD: IMMUNE RESPONSE TO PROSTATE-SPECIFIC ANTIGEN CORRELATES WITH IMPROVED OVERALL SURVIVAL
- DOI:
10.1016/j.juro.2014.02.2103 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Simon Hall;Debraj GuhaThakurta;Li-Qun Fan;Francis Stewart;Tuyen Vu;Philip Kantoff;Eric Small;Charles Drake;Nadeem Sheikh;James Trager;Celestia Higano - 通讯作者:
Celestia Higano
Frequency Response of Grid-Forming and Following Inverters-Based Microgrid Supplied by Onshore Electrified Ships
陆上电气化船舶并网逆变器微电网的频率响应
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Quang;Linh Tran;Thanh Vo;Tuyen Vu;Bảo - 通讯作者:
Bảo
Tuyen Vu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tuyen Vu', 18)}}的其他基金
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229074 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
- 批准号:82302400
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
氧化/还原助剂修饰CdS用于光催化分解H2S制氢的超快光物理机理研究
- 批准号:22311530118
- 批准年份:2023
- 资助金额:37 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Composite Physics-Informed Learning of Dynamic Systems
职业:动态系统的复合物理知情学习
- 批准号:
2238296 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: CAS- Climate: Climate Adaptation Pathways in Eco-Hydrologic Systems with Physics-Informed Machine Learning
职业:CAS-气候:基于物理的机器学习在生态水文系统中的气候适应途径
- 批准号:
2144332 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant