CAREER: Composite Physics-Informed Learning of Dynamic Systems
职业:动态系统的复合物理知情学习
基本信息
- 批准号:2238296
- 负责人:
- 金额:$ 49.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cyber-physical systems (CPSs) are core technologies in many modern engineering systems, spanning from automobiles, robots, medical devices, buildings, to power grids and advanced manufacturing systems. With the wide availability of data from these systems, machine learning (ML) and artificial intelligence (AI) have found great success in many CPS applications. However, their current fundamental challenges are that they often require big data, may violate basic physical principles leading to underperformance or even failures, and do not robustly handle messy data from real-life systems. This project creates new methods, algorithms, and software in a cyberinfrastructure (CI) that seamlessly and synergistically integrate ML/AI with traditional physical knowledge in so-called physics-informed machine learning (PIML) models that can overcome these challenges. The CI is built upon a unified theoretical foundation of PIML, a framework and software for composing heterogeneous models into composite PIML models, and novel methods for improving their efficiency and accuracy. The developed technologies will push forward the frontiers of ML/AI in CPSs to open up new exciting pathways for overcoming the inherent challenges and enhancing the performance and safety of AI-driven CPSs, thus broadening their real-life applications. This project deeply integrates research activities with education activities to excite and foster experiential learning and research experience in computer science and engineering at the undergraduate and graduate levels, and to promote STEM participation among underrepresented groups and enrich public understanding through collaboration with local schools and public programs. The project serves the national interest, as stated by NSF's mission, by promoting the progress of science, and to advance the national health, prosperity, and welfare.The overarching goal of this project is to integrate ML and physics within a comprehensive, flexible, and synergistic CI for composite PIML and active learning of dynamic systems. To this end, its objectives are to develop (1) a theoretical foundation of unified PIML frameworks; (2) a theoretical framework and software for composing models and physical properties in composite PIML models; and (3) physics-informed active learning methods which directly integrate physics to obtain the most informative data consistent with physics for improving the sample efficiency and accuracy of learning. This research advances the state of knowledge regarding unification of PIML methods, the benefits and costs of PIML, how to effectively and efficiently compose models and physical properties in a heterogeneous PIML model, and how to integrate physical properties into active learning. It also creates methodologies and software that enable rapid development and exploration of novel data-driven modeling methods for dynamic systems, pushing the limits and enhancing the applicability and performance of ML in CPSs. By building a solid foundation for integrating physics and ML to yield accurate, interpretable, robust, and physically consistent models, the CI will facilitate high-performance data-driven prediction, simulation, optimization, and control methods for CPSs, benefiting a broad range of scientific and engineering applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络物理系统(CPSS)是许多现代工程系统中的核心技术,涵盖了汽车,机器人,医疗设备,建筑物,到电网和高级制造系统。随着这些系统的广泛可用性,机器学习(ML)和人工智能(AI)在许多CPS应用程序中都取得了巨大的成功。但是,他们目前的基本挑战是他们通常需要大数据,可能违反基本的物理原则,导致表现不佳甚至失败,并且不会强大地处理现实生活中的杂乱数据。该项目在网络基础结构(CI)中创建了新的方法,算法和软件,该方法将ML/AI与传统的物理知识整合到所谓的物理知识的机器学习(PIML)模型中,以克服这些挑战。 CI建立在PIML的统一理论基础之上,PIML是一种将异质模型组成复合PIML模型的框架和软件,以及提高其效率和准确性的新方法。开发的技术将推动CPSS中ML/AI的前沿,为克服固有的挑战并增强AI驱动的CPSS的性能和安全性开辟了新的令人兴奋的途径,从而扩大了其现实生活中的应用。该项目将研究活动与教育活动深入融合,以激发本科和研究生水平的计算机科学和工程学的体验式学习和研究经验,并通过与当地学校和公共计划的合作来促进代表性不足的群体中的STEM参与,并丰富公众的理解。该项目通过促进科学进步并促进国家健康,繁荣和福利来为国家利益,如NSF的使命所述,该项目的总体目标是将ML和物理学整合到全面,灵活的和物理学中,并协同综合CI,用于复合PIML和动态系统的积极学习。为此,其目标是开发(1)统一PIML框架的理论基础; (2)一个理论框架和软件,用于在复合PIML模型中构成模型和物理性质; (3)物理信息有效的学习方法,这些方法直接整合物理学,以获取与物理学一致的最有用的数据,以提高样本效率和学习的准确性。这项研究推进了有关PIML方法统一的知识状态,PIML的收益和成本,如何有效,有效地在异质PIML模型中有效地构成模型和物理特性,以及如何将物理特性整合到主动学习中。它还创建了方法和软件,可以使动态系统的新型数据驱动建模方法的快速开发和探索,推动限制并增强CPSS中ML的适用性和性能。通过为整合物理和ML的稳固基础,以产生准确,可解释,健壮和身体一致的模型,CI将促进高性能数据驱动的预测,模拟,仿真,优化和控制方法,从而受益于广泛的科学和工程应用。该奖项反映了NSF的构建范围,并依赖于NSF的Inforthorial Indunitual teem teem teem teem teem eymed eymed,其价值是依据,并且是依据的价值。审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Informed Machine Learning for Modeling and Control of Dynamical Systems
- DOI:10.23919/acc55779.2023.10155901
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Truong X. Nghiem;Ján Drgoňa;Colin N. Jones;Zoltán Nagy;Roland Schwan;Biswadip Dey;A. Chakrabarty
- 通讯作者:Truong X. Nghiem;Ján Drgoňa;Colin N. Jones;Zoltán Nagy;Roland Schwan;Biswadip Dey;A. Chakrabarty
Causal Deep Operator Networks for Data-Driven Modeling of Dynamical Systems
用于动力系统数据驱动建模的因果深度算子网络
- DOI:10.1109/smc53992.2023.10394294
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nghiem, Truong X.;Nguyen, Thang;Nguyen, Binh T.;Nguyen, Linh
- 通讯作者:Nguyen, Linh
Connectivity-Preserving Distributed Informative Path Planning for Mobile Robot Networks
- DOI:10.1109/lra.2024.3362133
- 发表时间:2024-03
- 期刊:
- 影响因子:5.2
- 作者:Binh T. Nguyen;Truong X. Nghiem;Linh Nguyen;H. M. La;Thang Nguyen
- 通讯作者:Binh T. Nguyen;Truong X. Nghiem;Linh Nguyen;H. M. La;Thang Nguyen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Truong Nghiem其他文献
Truong Nghiem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Truong Nghiem', 18)}}的其他基金
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
ERI: Towards Data-driven Learning and Control of Building HVAC Systems
ERI:迈向数据驱动的建筑 HVAC 系统学习和控制
- 批准号:
2138388 - 财政年份:2022
- 资助金额:
$ 49.25万 - 项目类别:
Standard Grant
相似国自然基金
基于冕芳烃的长度可调分子管柱合成及其主客体作用物理化学机制研究
- 批准号:22371241
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
嵌入物理模型的机器学习辅助热耦合精馏序列优化合成方法
- 批准号:22308251
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多曲面共轭分子的设计合成、精准转化、可控组装及光物理性能研究
- 批准号:22371107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
新型聚芴类高分子材料的合成与光物理性质及其在光电器件与化学传感器中的应用探索
- 批准号:52261135541
- 批准年份:2022
- 资助金额:105.00 万元
- 项目类别:国际(地区)合作与交流项目
基于物理可信合成图像的深度学习目标识别模型可解释性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
音声・楽器音の物理的生成過程を加味した深層音分析合成法の確立
建立考虑人声和器乐声音物理产生过程的深度声音分析和合成方法
- 批准号:
24KJ1236 - 财政年份:2024
- 资助金额:
$ 49.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
植物の防御機構等に関与する不溶性プロアントシアニジン合成機構の生理的解析
植物防御机制中不溶性原花青素合成机制的生理分析
- 批准号:
23K21191 - 财政年份:2024
- 资助金额:
$ 49.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
合成ヘムモデル化合物による生理活性ガスの系統的機能探索
使用合成血红素模型化合物对生理活性气体进行系统功能探索
- 批准号:
24K01640 - 财政年份:2024
- 资助金额:
$ 49.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
計算機解析と有機合成、生化学的評価を融合したメタロβラクタマーゼ阻害剤の開発
结合计算机分析、有机合成和生化评价开发金属-β-内酰胺酶抑制剂
- 批准号:
22KJ0477 - 财政年份:2023
- 资助金额:
$ 49.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Remediation of radioactive cesium from Fukushima wastewater using innovative composite material
使用创新复合材料修复福岛废水中的放射性铯
- 批准号:
22KF0308 - 财政年份:2023
- 资助金额:
$ 49.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows