CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning

职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料

基本信息

项目摘要

The objective of this CAREER project is to engage and educate graduate and undergraduate students in materials design, with a particular focus on designing cellular mechanical metamaterials (CMMs) under the effects of fabrication-related material uncertainty. The plan includes physics-based computations, machine learning (ML), and design under uncertainty strategies, as well as the development of outreach activities. The underlying hypothesis is that the CMMs can be designed to achieve targeted mechanical properties and performance by developing a multi-scale computational framework that investigates the relationship between component-scale properties and underlying micro-scale architectures. The societal impacts of the project will be on the economy, with the promise of designing sustainable, lightweight, and high-performance materials. The gained knowledge will be disseminated to academia and industry through technical activities and open-access graphical software tools. Additional deliverables of the project include curriculum development at undergraduate and graduate levels, research experiences for students, and other outreach activities involving students and educators, with a special focus on individuals from underrepresented groups.The overarching goal of this project is to improve the current knowledge of CMM design and enhance the performance of 3-D printed products using a multi-scale framework that will explore complex and non-linear relationships between the microstructure and component by allowing non-periodically repeating microstructure designs and accounting for the fabrication-related uncertainty. This goal will be accomplished by developing a multi-scale design strategy driven by physics-based material models, data-driven and physics-informed ML, design optimization, and uncertainty quantification approaches. The ability to model non-periodical microstructure arrangements of CMMs will be essential to explore their true component-level mechanical performance, thereby substantially increasing their potential for use in new-generation engineering systems for hypersonics, structural applications, energy absorption, sensors, and soft robots. The findings of the project will also identify designs that improve mechanical performance and reliability by considering the effects of material uncertainty. In addition, the design methodology for CMMs will be extended to nature-inspired cellular materials, such as artificial bone structures, for designing such systems to achieve target mechanical performance under uncertainty. The activity will also promote teaching, training, and learning through the development of outreach activities, such as camps, programs, and workshops targeting both youths and teachers. The participation of underrepresented groups is guaranteed by specifically addressing outreach programs for female students, first-generation college students, students from underserved communities in Southwest Virginia, and other minorities. The project data and findings will be made publicly available at Virginia Tech’s open-access repository, VTechData.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业项目的目的是参与材料设计的毕业生和本科生,特别着重于在与织物相关的材料不确定性的影响下设计细胞机械超材料(CMM)。该计划包括基于物理学的计算,机器学习(ML)和不确定性策略的设计以及外展活动的发展。潜在的假设是,可以通过开发一个多规模的计算框架来设计CMMS来实现目标的机械性能和性能,该计算框架研究组件尺度属性与基础微型体系结构之间的关系。该项目的社会影响将对经济产生,并有望设计可持续,轻巧和高性能的材料。获得的知识将通过技术活动和开放式图形软件工具传播到学术界和行业。该项目的其他可交付成果包括在本科和研究生水平的当前发展,学生的研究经验以及其他涉及学生和教育工作者的外展活动,特别关注来自代表性不足的人群的个人。该项目的超整齐目标是改善CMM设计的当前知识,并通过允许使用3-D印刷的产品来探索多个框架复杂的绩效,以促进效果非隔离重复的微观结构设计和与织物相关的不确定性的核算。该目标将通过制定由基于物理的材料模型,数据驱动和物理信息的ML,设计优化和不确定性量化方法驱动的多尺度设计策略来实现。对CMM的非周期性微观结构排列进行建模的能力对于探索其真正的组件级机械性能至关重要,从而实质上增加了它们在新产生的工程系统中用于高超为性,结构应用,能量吸收,传感器和软机器人的潜力。该项目的发现还将通过考虑材料不确定性的影响来确定可以提高机械性能和可靠性的设计。此外,CMM的设计方法将扩展到自然风格的细胞材料,例如人造骨结构,以设计此类系统以在不确定性下实现目标机械性能。这项活动还将通过开展推出活动,例如针对年轻人和教师的营地,计划和研讨会来促进教学,培训和学习。通过专门针对女学生,第一代大学生,来自弗吉尼亚州西南部服务不足的社区的学生以及其他少数群体的学生,可以保证代表性不足的团体的参与。该项目数据和调查结果将在弗吉尼亚理工大学的开放访问存储库VTECHDATA上公开提供。该奖项反映了NSF的法定任务,并使用基金会的知识分子和更广泛的影响评估标准,通过评估来诚实地获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pinar Acar其他文献

Quantification of Aleatoric and Epistemic Uncertainty of Microstructures using Experiments and Markov Random Fields
使用实验和马尔可夫随机场量化微观结构的任意和认知不确定性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew T. Long;Arulmurugan Senthilnathan;Pinar Acar
  • 通讯作者:
    Pinar Acar
Sensitivity Assessment on Homogenized Stress–Strain Response of Ti-6Al-4V Alloy
Ti-6Al-4V 合金均匀应力-应变响应的敏感性评估
  • DOI:
    10.1007/s11837-023-06188-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Mohamed Elleithy;Hengduo Zhao;Pinar Acar
  • 通讯作者:
    Pinar Acar
Design of polycrystalline metallic alloys under multi-scale uncertainty by connecting atomistic to meso-scale properties
通过连接原子与介观尺度特性来设计多尺度不确定性下的多晶金属合金
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    M. Billah;Pinar Acar
  • 通讯作者:
    Pinar Acar
Sensitivity Analysis and Uncertainty Quantification for Crystal Plasticity Parameters of Ti-6Al-4V Alloy
Ti-6Al-4V合金晶体塑性参数的敏感性分析和不确定度量化
  • DOI:
    10.2514/6.2024-1233
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohamed Elleithy;Pinar Acar
  • 通讯作者:
    Pinar Acar
A Deep Learning Framework for Time-Series Processing-Microstructure-Property Prediction
用于时间序列处理-微观结构-性能预测的深度学习框架

Pinar Acar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pinar Acar', 18)}}的其他基金

Collaborative Research: AI-Driven Multi-Scale Design of Materials under Processing Constraints
协作研究:人工智能驱动的加工约束下材料的多尺度设计
  • 批准号:
    2053840
  • 财政年份:
    2021
  • 资助金额:
    $ 54.94万
  • 项目类别:
    Standard Grant

相似国自然基金

基于高通量筛选技术理性设计开发高产花姜酮细胞工厂的研究
  • 批准号:
    22308167
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人诱导多功能干细胞选择性荧光探针组合的设计与合成:多色染色及多细胞器靶向染色策略
  • 批准号:
    22377042
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可控性“冷-热”转换型DLL3-CAR-MSCs的设计构建及其协同ICIs治疗小细胞肺癌的实验研究
  • 批准号:
    82303759
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用细胞内RNA结构信息结合深度学习算法设计高效细胞环境特异的CRISPR-Cas13d gRNA
  • 批准号:
    32300521
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SARS-CoV-2及其变异株B/T细胞表位的鉴定及表位疫苗的设计和免疫保护性研究
  • 批准号:
    82302065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Microscopy and Image Analysis Core
显微镜和图像分析核心
  • 批准号:
    10557025
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
Development of a digital therapeutic targeting anxiety sensitivity to reduce PTSD-SUD in women presenting for emergency care after sexual assault.
开发一种针对焦虑敏感性的数字疗法,以减少性侵犯后寻求紧急护理的女性的 PTSD-SUD。
  • 批准号:
    10449766
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
Cellular and Metabolic Dysfunction in Sepsis-Induced Immune Paralysis
脓毒症引起的免疫麻痹中的细胞和代谢功能障碍
  • 批准号:
    10724018
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
ORS Spine Section Symposia: Enhancing Spine Research throughMentoring, Diversity and Collaboration
ORS 脊柱部分研讨会:通过指导、多样性和协作加强脊柱研究
  • 批准号:
    10606748
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
From genotype to phenotype in a GWAS locus: the role of REST in atherosclerosis
GWAS 位点从基因型到表型:REST 在动脉粥样硬化中的作用
  • 批准号:
    10570469
  • 财政年份:
    2023
  • 资助金额:
    $ 54.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了