CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling

职业:使用计算模型表征声带血管病变生物力学

基本信息

  • 批准号:
    2338676
  • 负责人:
  • 金额:
    $ 60.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2029-03-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will advance fundamental understanding of the vascular lesions of human vocal folds. These lesions refer to dilated blood vessels in the fold’s tissue and are particularly common in professions with high voice usage, such as educators, public speakers, and singers. The presence of vascular lesions and their potential rupture affect the ability of the tissue to vibrate normally, which severely disrupts speech and leads to vocal fatigue. However, the underlying mechanisms of lesion growth and fatigue resulting from this condition remain uncertain. There is thus a significant need to investigate the effects of vascular lesions on the phonation process. This project will develop predictive computational models of coupled aerodynamics, hemodynamics, and solid mechanics to account for these lesions, their progression, and the corresponding voice fatigue. The resultant framework will enable improvements in biomechanical models of the human larynx, while such models are also being considered for potential use in surgical interventions, enhancement in prevention of voice disorders, and exploring issues related to voice training. Along with the development and dissemination of technical tools, the award will also support the education and training of underrepresented minorities, expansion through virtual and on-site outreach activities to inspire appreciation of phonation biomechanics within a general audience and connect with interested patients, as well as interaction with pre-collegiate students from marginalized backgrounds through an annual summer workshop. The specific goal of the research is to analyze the three-way interaction between the vascular lesion, poroviscoelastic vocal fold tissue, and glottal airflow, to illustrate the biomechanical characteristics of the tissue and quantify metrics that are hypothesized to be associated with vocal fatigue. Therefore, the research objectives of this project include: (1) developing a fully coupled multi-component fluid-poroelastic structure interaction modeling approach integrating the turbulent glottal airflow and permeable fold tissue in presence of vascular lesions to assess voice fatigue indicators, (2) creating a computational solver for modeling the lesion progression in the form of the pressure-driven crack filled with blood propagating in the poroelastic tissue to explore the significance of phonation conditions, and (3) quantifying the uncertainty in the model predictions using a Monte-Carlo type simulation approach to evaluate how various physical parameters and morphological features affect the fold’s biomechanics and lesion propagation. This project will enable the PI to advance the knowledge base in mechanics and computational simulation, establishing the foundation for her long-term career in speech biomechanics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这位教师早期职业发展(职业)格兰特将促进对人声折叠的血管病变的基本理解。这些病变指的是折叠组织中扩张的血管,在高音使用的职业中尤为常见,例如教育者,公众演讲者和歌手。血管病变的存在及其潜在破裂会影响组织正常振动的能力,这严重破坏了言语并导致声带疲劳。但是,这种情况导致病变生长和疲劳的潜在机制仍然不确定。因此,需要研究血管病变对发声过程的影响。该项目将开发耦合空气动力学,血液动力学和固体机制的预测计算模型,以解释这些病变,其进展和相应的语音疲劳。最终的框架将能够改善人喉的生物力学模型,而此类模型也被视为用于手术干预措施的潜在使用,增强语音障碍的预防以及探索与语音培训有关的问题。随着技术工具的开发和传播,该奖项还将支持代表性不足的少数群体的教育和培训,通过虚拟和现场外展活动扩展,以激发一般受众群体中对语音生物力学的欣赏,并与有趣的患者建立联系,以及与年度夏季工作室的近距离学生的互动,以及与来自边缘化背景的预委托学生的互动。该研究的具体目的是分析血管病变,porovisCoelastic声乐组织和全局气流之间的三向相互作用,以说明组织的生物力学特征并量化与声带疲劳相关的指标。因此,该项目的研究目标包括:(1)开发完全耦合的多组分流体弹性弹性结构相互作用建模方法,该方法在存在的情况下整合了湍流的Glottal气流和可渗透的褶皱组织,并在存在血管疲劳指示器的情况下,在存在的情况下,(2)创建填充液体的por虫的计算求解器,以使其与压力型构建形式,以使其形成压力的构图,使其形成压力范围,使其构成压力范围的孔子,以使压缩的构建型号的孔子构建,以使压缩的构建构建形式,使其构成压力型的孔子,以使压缩的构建构建形式,使得孔子构成压力型的溶解器。发声条件的重要性以及(3)使用蒙特卡洛型仿真方法量化模型预测中的不确定性,以评估各种物理参数和形态特征如何影响折叠的生物力学和病变的传播。该项目将使PI能够推进力学和计算模拟方面的知识基础,为她在语音生物力学领域的长期职业建立基础。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点评估来支持的,并具有更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rana Zakerzadeh其他文献

Coupled Hemodynamics and Oxygen Diffusion in Abdominal Aortic Aneurysm: A Computational Sensitivity Study
腹主动脉瘤的血流动力学和氧扩散耦合:计算敏感性研究
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
一种材料建模方法,可有效响应平面软组织,从而实现高效的计算模拟。
Predicting Bioprosthetic Heart Valve Shape, Structure, and Stress with In-vivo Operation
  • DOI:
    10.1080/24748706.2019.1586207
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rana Zakerzadeh;Will Zhang;Michael S. Sacks
  • 通讯作者:
    Michael S. Sacks
Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: the Application of a Computationally-Efficient Tissue Constitutive Model
生物人工心脏瓣膜的流固耦合分析:计算高效的组织本构模型的应用
Coupled processes of tissue oxygenation and fluid flow in biphasic vocal folds
  • DOI:
    10.1016/j.ijheatmasstransfer.2024.126494
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rana Zakerzadeh;Isabella McCollum;Manoela Neves
  • 通讯作者:
    Manoela Neves

Rana Zakerzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rana Zakerzadeh', 18)}}的其他基金

ERI: A Novel Multiphysics Framework for Fluid Circulation and Oxygen Transport in Vocal Folds
ERI:声带中液体循环和氧气运输的新型多物理场框架
  • 批准号:
    2138225
  • 财政年份:
    2022
  • 资助金额:
    $ 60.38万
  • 项目类别:
    Standard Grant

相似国自然基金

智慧城市导向下基于街景视觉表征的“人-环境”数字互联机制
  • 批准号:
    52308015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
轻量化多功能因瓦合金多孔材料增材制造与性能表征评价
  • 批准号:
    12372133
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
空间包络误差表征下五轴机床装配精度衍生机理与层递调控机制
  • 批准号:
    52365064
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于物理规律自适应表征的地震数据智能编码采集方法研究
  • 批准号:
    42374222
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Characterization of clinical phenotypes of laryngeal dystonia and voice tremor
喉肌张力障碍和声音震颤的临床表型特征
  • 批准号:
    10488250
  • 财政年份:
    2021
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of clinical phenotypes of laryngeal dystonia and voice tremor
喉肌张力障碍和声音震颤的临床表型特征
  • 批准号:
    10689289
  • 财政年份:
    2021
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of 3D feeding kinematics and EMG of rats and laminar specific single cell encoding properties in the motor cortex
大鼠 3D 进食运动学和肌电图的表征以及运动皮层层状特定单细胞编码特性
  • 批准号:
    10006877
  • 财政年份:
    2019
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of 3D kinematics and EMG and related information in neural activities recorded from the orofacial motor cortex during feeding in rats - Revision - 1
大鼠进食期间口面部运动皮层记录的神经活动的 3D 运动学和 EMG 特征及相关信息 - 修订版 - 1
  • 批准号:
    10227568
  • 财政年份:
    2019
  • 资助金额:
    $ 60.38万
  • 项目类别:
Characterization of immune response in vocal fold injury and tissue regeneration
声带损伤和组织再生中免疫反应的表征
  • 批准号:
    8603765
  • 财政年份:
    2012
  • 资助金额:
    $ 60.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了