ERI: A Novel Multiphysics Framework for Fluid Circulation and Oxygen Transport in Vocal Folds

ERI:声带中液体循环和氧气运输的新型多物理场框架

基本信息

  • 批准号:
    2138225
  • 负责人:
  • 金额:
    $ 19.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Voice disorders have the prevalence of almost 30% in the general population and 60% in professions with high voice usage, such as educators, public speakers, and singers. Most voice dysfunctions have a one-to-one correspondence with the dynamical flow-structure interaction feature of phonation, and localized vocal fold lesions are associated with decreased blood flow and lower oxygen levels within the tissue. There is thus a profound need for understanding the effect of fluid dynamics within the vocal fold on oxygen flow since local changes in tissue oxygenation and perfusion is a critical metric of its functional state. The research results will provide a deep understanding of the fluid physics of phonation and its contribution to hydration and oxygen transport in the vocal fold. The project will also encompass educational plans that involve the operation of a YouTube channel, summer undergraduate research experience, as well as outreach activities to local K-12 schools and the public through the Carnegie Science Center Museum and Women in Science group, through the programs that foster the participation of low-income high school students, K-6 students, and girls in STEM. The goal of this project is to develop a multi-physics computational framework to investigate the role of interstitial liquid distribution and systemic hydration of the vocal fold during phonation using a biphasic description of vocal fold tissue. Systemic hydration plays a key chemo-mechanical role in the function of vocal folds, which is still not fully understood. The project will fill this gap by combining a fluid-poroelastic structure interaction model with an oxygen transport model, in two specific aims: (1) developing a fluid-structure interaction modeling approach integrating the fully coupled behavior between turbulent glottal airflow and porous vocal fold’s structure to provide a spatiotemporal prediction of filtration velocity, as well as oxygen concentration within the porous vocal fold, and (2) investigating the relationship between interstitial fluid circulation and oxygen flow in the vocal fold, in order to identify the extent to which vocal fold dehydration attenuates oxygen concentration. The Reynolds-Averaged Navier-Stokes equations and Biot’s poroelasticity equations are going to be used to model airflow through the larynx and fluid-saturated vocal fold tissue respectively, while for oxygen transport due to the porous flow in the tissue, the convection-diffusion–reaction equation will be applied. The proposed measurements and numeric will quantify for the first time the three-dimensional interstitial convective fluid velocities that drive the mass transport and provide systemic hydration of the tissue, as well as detailed data on oxygen concentration inside the vocal fold under different phonation conditions, that acts as an indicator for tissue hypoxia. Results will highlight the importance of including poroelasticity in phonation models which promotes new visions for the management of vocal diseases, such as in the development of voice prostheses for laryngectomized patients. The findings are also directly applicable to other problems involving fluid-structure interaction and mass transport, such as cardiovascular diseases and tumor metastasis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。语音障碍在普通人群中的流行率近30%,在高度语音使用的职业中,教育家,公开演讲者和歌手的流行率为60%。大多数语音功能障碍与发音的动态流程结构相互作用特征具有一对一的对应关系,并且局部声带病变与组织内的血液流量减少和氧气水平下降有关。因此,由于组织氧合和灌注的局部变化是其功能状态的关键指标,因此非常需要了解声折内流体动力学对氧气流的影响。研究结果将对发声的流体物理学及其对水合和氧气传输的贡献提供深入的了解。该项目还将涵盖教育计划,涉及YouTube频道,夏季本科研究经验的运作,以及通过卡内基科学中心博物馆和科学小组中的女性向当地的K-12学校和公众提供的宣传活动,这些计划通过促进了低收入的高中生,K-6学生,K-6学生,K-6学生以及STEM中的女孩的参与。该项目的目的是开发一个多物理计算框架,以使用声带折叠组织的双面描述在投球过程中调查声折的间隙液体分布和全身水合的作用。系统性水合在声带的功能中起关键的化学机械作用,但仍未完全理解。 The project will fill this gap by combining a fluid-poroelastic structure interaction model with an oxygen transport model, in two specific aims: (1) developing a fluid-structure interaction modeling approach integrating the fully coupled Behavior between turbulent glottal airflow and porous vocal fold’s structure to provide a spatial temporal prediction of filtration velocity, as well as oxygen concentration within the porous vocal fold, and (2) investigating the在声带中,间质流体循环与氧气流之间的关系,以确定声带折叠脱水的程度减轻了氧气浓度。雷诺平均的Navier-Stokes方程和Biot的毛弹性方程将分别用于通过喉和流体饱和的声带组织对气流进行建模,而对于由于组织中的多孔流动而导致的氧气传输,将应用转换 - 扩张 - 扩散 - 扩散 - 处理方程。提出的测量和数字将首次量化,这些速度的三维间质对流流体速度可以驱动大众传输并提供组织的全身水合,以及在不同发音条件下声带内部氧气浓度的详细数据,这些数据是组织低氧的指示器。结果将强调在发声模型中加入毛弹性的重要性,该模型促进了人声疾病的管理新愿景,例如为喉切除患者的语音假体开发。这些发现还直接适用于涉及流体结构相互作用和大规模运输的其他问题,例如心血管疾病和肿瘤转移。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响审查标准通过评估来评估的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prediction of wall stress and oxygen flow in patient-specific abdominal aortic aneurysms: the role of intraluminal thrombus
患者特异性腹主动脉瘤壁应力和氧流量的预测:腔内血栓的作用
Gender in human phonation: Fluid–structure interaction and vocal fold morphology
人类发声中的性别:流体结构相互作用和声带形态
  • DOI:
    10.1063/5.0146162
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    McCollum, Isabella;Throop, Alexis;Badr, Durwash;Zakerzadeh, Rana
  • 通讯作者:
    Zakerzadeh, Rana
Analyzing the Effects of Multi-Layered Porous Intraluminal Thrombus on Oxygen Flow in Abdominal Aortic Aneurysms
多层多孔腔内血栓对腹主动脉瘤血氧流量的影响分析
  • DOI:
    10.3390/oxygen2040034
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Throop, Alexis;Badr, Durwash;Durka, Michael;Bukač, Martina;Zakerzadeh, Rana
  • 通讯作者:
    Zakerzadeh, Rana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rana Zakerzadeh其他文献

Coupled Hemodynamics and Oxygen Diffusion in Abdominal Aortic Aneurysm: A Computational Sensitivity Study
腹主动脉瘤的血流动力学和氧扩散耦合:计算敏感性研究
A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
一种材料建模方法,可有效响应平面软组织,从而实现高效的计算模拟。
Predicting Bioprosthetic Heart Valve Shape, Structure, and Stress with In-vivo Operation
  • DOI:
    10.1080/24748706.2019.1586207
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rana Zakerzadeh;Will Zhang;Michael S. Sacks
  • 通讯作者:
    Michael S. Sacks
Fluid–Structure Interaction Analysis of Bioprosthetic Heart Valves: the Application of a Computationally-Efficient Tissue Constitutive Model
生物人工心脏瓣膜的流固耦合分析:计算高效的组织本构模型的应用
Coupled processes of tissue oxygenation and fluid flow in biphasic vocal folds
  • DOI:
    10.1016/j.ijheatmasstransfer.2024.126494
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rana Zakerzadeh;Isabella McCollum;Manoela Neves
  • 通讯作者:
    Manoela Neves

Rana Zakerzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rana Zakerzadeh', 18)}}的其他基金

CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Standard Grant

相似国自然基金

novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
    32171163
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

Development of AI/ML-ready shared repository for parametric multiphysics modeling datasets: standardization for predictive modeling of selective brain cooling after traumatic injury
开发用于参数多物理场建模数据集的 AI/ML 就绪共享存储库:创伤后选择性脑冷却预测模型的标准化
  • 批准号:
    10842926
  • 财政年份:
    2022
  • 资助金额:
    $ 19.57万
  • 项目类别:
Study on novel physical properties of quantum materials with multi-orbital electron systems
多轨道电子系统量子材料新物理性质研究
  • 批准号:
    19H01837
  • 财政年份:
    2019
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel approach for spectroscopic molecule detection: Pioneering multicolor multiphoton photothermal spectroscopy
光谱分子检测的新方法:开创性的多色多光子光热光谱
  • 批准号:
    18H03915
  • 财政年份:
    2018
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Multiphysics of bubbles and nanoparticles in porous media: Novel approaches to the remediation of subsurface environments contaminated by chlorinated organic substances
多孔介质中气泡和纳米颗粒的多物理场:修复受氯化有机物质污染的地下环境的新方法
  • 批准号:
    194309-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Discovery Grants Program - Individual
Developments and applications of novel electronic structure theories for degenerate systems with an accurate description of spin
精确描述自旋的简并系统新型电子结构理论的发展和应用
  • 批准号:
    17K14438
  • 财政年份:
    2017
  • 资助金额:
    $ 19.57万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了