CAREER: Connecting eukaryotic electron transfer components to nitrogenase using a bacterial chassis
职业:使用细菌底盘将真核电子传递组件连接到固氮酶
基本信息
- 批准号:2338085
- 负责人:
- 金额:$ 103.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2029-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Important advancements in our understanding of biological nitrogen fixation, bolstered by emerging synthetic biology tools, suggest we are closer than ever to engineering plants to fix nitrogen. Engineering plants to fix nitrogen could improve the sustainability of the bioeconomy. However, we lack the knowledge to predict the behavior and specificity of electron carriers such as ferredoxin, which are needed to power nitrogenase. There is a critical need to test eukaryotic electron transfer components for their ability to interact with nitrogenase and measure how changes in the cellular redox environment sustain electron flow. The overall objective of the research proposed here is to use a bacterial chassis to rapidly define how eukaryotic electron transfer components can participate in electron delivery to nitrogenase and invent a powerful platform for evolution of synthetic electron flow pathways. The research aims synergize with educational goals by incorporating a semester-long project that focuses on bioengineering nitrogen fixation into existing courses using a novel culturally responsive pedagogical framework.The central hypothesis for the project is that electron transfer to nitrogenase is one of the primary constraints preventing introduction of this enzyme into eukaryotic systems, but it is possible to select for variants in eukaryotic electron transfer components to overcome this bottleneck. To test this hypothesis, the investigator proposes to develop a new tool to analyze electron flow to nitrogenase. This tool will use a bacterial chassis to test eukaryotic electron transfer components at physiological levels and evolve these electron transfer components for enhanced electron flow to nitrogenase. Such a contribution would be significant because it would enable more accurate predictions regarding nitrogenase functionality within plant organelles and would establish a robust platform for optimizing electron transfer to nitrogenase. This would not only make the goal of engineering plants to fix nitrogen more attainable, but it would also further our understanding of the determinants of electron flow and how electron transfer pathways can be optimized for biotechnological purposes. This project is supported by the Systems and Synthetic Biology Cluster of the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过新兴的合成生物学工具支持生物氮固定的重要进步,这表明我们比以往任何时候都更接近工厂以固定氮。固定氮的工程工厂可以改善生物经济的可持续性。但是,我们缺乏预测电子载体(例如铁氧还蛋白)的行为和特异性的知识,这些电子载体是为氮酶供电的。迫切需要测试真核电子转移成分与氮相互作用并测量细胞氧化还原环境中的变化如何维持电子流的能力。这里提出的研究的总体目的是使用细菌底盘快速定义真核电子传递成分如何参与电子传递到氮酶,并为合成电子流途径进化的强大平台发明了强大的平台。 The research aims synergize with educational goals by incorporating a semester-long project that focuses on bioengineering nitrogen fixation into existing courses using a novel culturally responsive pedagogical framework.The central hypothesis for the project is that electron transfer to nitrogenase is one of the primary constraints preventing introduction of this enzyme into eukaryotic systems, but it is possible to select for variants in eukaryotic electron transfer要克服这种瓶颈的组件。为了检验这一假设,研究者建议开发一种新工具来分析电子流向氮酶。该工具将使用细菌底盘在生理水平上测试真核电子转移成分,并进化这些电子转移成分,以增强电子流向氮酶。这样的贡献将是重要的,因为它可以对植物细胞器中的氮酶功能进行更准确的预测,并建立一个可靠的平台,以优化电子转移到氮酶。这不仅将使工厂更具固定氮的目的,而且还将进一步了解我们对电子流的决定因素以及如何为生物技术目的优化电子传输途径。该项目得到了分子和蜂窝生物科学划分的系统和合成生物学集群的支持。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Fixen其他文献
Kathryn Fixen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于天然序列库的天冬酰胺多肽连接酶计算进化及机理研究
- 批准号:32371324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NuXTHs重塑细胞壁超微连接与荷花株型建成的分子机理研究
- 批准号:32360070
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
E3泛素连接酶Fbxo7通过调节心肌细胞线粒体-内质网稳态减轻急性心肌缺血损伤及其机制研究
- 批准号:82370334
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
缝隙连接Cx43磷酸化修饰介导钙信号传递异常参与尼古丁致肺动脉重构的分子机制
- 批准号:82373622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
fMRI功能连接引导的个体化TMS治疗重度抑郁障碍及其脑影像学机制
- 批准号:82301742
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Psychiatric Cell Map Initiative: Connecting Genomics, Subcellular Networks, and Higher Order Phenotypes
精神病学细胞图谱计划:连接基因组学、亚细胞网络和高阶表型
- 批准号:
10447106 - 财政年份:2018
- 资助金额:
$ 103.62万 - 项目类别:
The Psychiatric Cell Map Initiative: Connecting Genomics, Subcellular Networks, and Higher Order Phenotypes
精神病学细胞图谱计划:连接基因组学、亚细胞网络和高阶表型
- 批准号:
10208658 - 财政年份:2018
- 资助金额:
$ 103.62万 - 项目类别:
Connecting BRCA1 functions with DNA crosslink sensitivity
将 BRCA1 功能与 DNA 交联敏感性联系起来
- 批准号:
9140641 - 财政年份:2016
- 资助金额:
$ 103.62万 - 项目类别:
Analysis of prokaryote-eukaryote interaction and the DNA transfer system connecting between those two organisms
原核生物与真核生物相互作用以及连接这两种生物体之间的 DNA 转移系统的分析
- 批准号:
16K07200 - 财政年份:2016
- 资助金额:
$ 103.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lipid Transport-Connecting Fundamental Membrane Assembly To Human Disease
脂质运输将基本膜组装与人类疾病联系起来
- 批准号:
7540356 - 财政年份:2008
- 资助金额:
$ 103.62万 - 项目类别: