Leveraging the unique metabolism of Megasphaera elsdenii for metabolic engineering to medium and long chain organic acids for use in jet fuels and biomaterials

利用埃氏巨型球菌的独特代谢进行代谢工程,生产用于喷气燃料和生物材料的中链和长链有机酸

基本信息

项目摘要

Bioproduction of sustainable fuels and materials, including aviation fuel, is a pressing and urgent issue. The knowledge and technologies developed in this proposal, mitigates climate change by creating carbon-neutral fuel. These biotechnologies increase rural economic development by creating a demand for sustainably grown plant biomass, decrease reliance on fossil carbon, and increase U.S. economic competitiveness. This project identifies long chain organic acid biosynthetic pathways in Megasphaera elsdenii, evaluates their activity under varying growth conditions, develops advanced genetic tools, and leverages those tools to improve the production of hexanoic acid, which is a sustainable aviation fuel precursor. The project is linked to a “women” in science program for 5th graders in the Clarke County public school system. As a new initiative, the project institutes joint training in STEM education for preservice student teachers, in conjunction with the University of Georgia College of Education. The metabolic diversity of microorganisms is only beginning to be understood and represents an untapped source of pathways to produce compounds that are difficult or impossible to engineer in existing model microbes. Megasphaera elsdenii, has the native ability to condense acetyl-CoA to efficiently generate C4 to C8 compounds at high flux and high yield, making it a compelling platform for the study of these pathways and to engineer the organism for production of fuels, chemicals and biomaterials. This project identifies long chain organic acid biosynthetic pathways in Megasphaera elsdenii, evaluates their activity under varying growth parameters, develops advanced genetic tools, and leverages those tools to improve flux to hexanoic acid, which is a sustainable aviation fuel precursor. A basic genetic toolset that allows gene deletion and heterologous expression is used to delete every nonessential gene predicted to be involved in chain elongation and analyze the impact on fermentation products to enable understanding of the genes responsible for each step. M. elsdenii has the rare ability to grow anaerobically on lactic acid as a carbon source as well as the ability to co-utilize lactic and acetic acids. The project involves physiological studies on wild type as well as mutational analysis to dissect the pathway(s) for anaerobic acetic acid utilization and lactic acid bioconversion. This project lays the foundation for engineering plant sugars to longer chain molecules and for alternate approaches to bioprocessing, such as the co-culture or sequential fermentation in which one organism converts sugars or biomass to lactic acid and an engineered M. elsdenii converts the lactic acid to a higher value product enabling strategies for a broad range of anaerobic microbial fermentations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可持续燃料和材料(包括航空燃料)的生物生产是一个紧迫而紧急的问题。在该提案中发展的知识和技术通过创建碳中性燃料来缓解气候变化。这些生物技术通过提出对可持续发展的植物生物量的需求,减少对化石碳的依赖并提高美国的经济竞争力来增加经济发展。该项目确定了长链有机酸生物合成途径在Megasphaera Elsdenii中,评估其在不同生长条件下的活性,开发出高级遗传工具,并利用这些工具来改善可持续的航空燃料前体的己酸盐的产生。该项目与克拉克县公立学校系统中五年级的科学计划中的“女性”有关。作为一项新倡议,该项目与佐治亚大学教育学院结合使用,为职前学生教师进行STEM教育联合培训。微生物的代谢多样性才开始被理解,并代表了未开发的途径来产生在现有模型微生物中难以或不可能设计的化合物的途径。 Megasphaera Elsdenii具有凝结乙酰辅酶A的天然能力,可在高通量和高产量下有效地生成C4至C8化合物,使其成为研究这些途径的引人注目的平台,并为生物生产燃料,化学物质和生物材料的生产生物。该项目确定了Megasphaera Elsdenii中的长链有机酸生物合成途径,评估其在不同生长参数下的活性,开发出高级遗传工具,并利用这些工具来改善己酸六氧化含量,这是一种可持续的航空燃料前体。一种允许基因缺失和异源表达的基本遗传工具集用于删除预测参与链伸长的每个非必需基因,并分析对发酵产物的影响,以使能够理解负责每个步骤的基因。 Elsdenii M. Elsdenii具有罕见的能力,可以在乳酸上厌氧作为碳源以及共同利用乳酸和乙酸的能力。该项目涉及有关野生型和突变分析的生理研究,以剖析厌氧乙酸利用和乳酸生物转化的途径。 This project lays the foundation for engineering plant sugars to longer chain molecules and for alternative approaches to bioprocessing, such as the co-culture or sequential fermentation in which one organism converts sugars or biomass to lactic acid and an engineered M. elsdenii converts the lactic acid to a higher value product enabling strategies for a broad range of anaerobic microbial fermentations.This award reflects NSF's法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来评估的值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janet Westpheling其他文献

The Streptomyces galP1 promoter has a novel RNA polymerase recognition sequence and is transcribed by a new form of RNA polymerase in vitro
链霉菌 galP1 启动子具有新型 RNA 聚合酶识别序列,并由新型 RNA 聚合酶在体外转录
  • DOI:
    10.1128/jb.179.10.3222-3231.1997
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Brawner;S. Mattern;Martin J. Babcock;Janet Westpheling
  • 通讯作者:
    Janet Westpheling

Janet Westpheling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janet Westpheling', 18)}}的其他基金

Morphogenesis in Streptomyces
链霉菌的形态发生
  • 批准号:
    9722960
  • 财政年份:
    1998
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Continuing Grant
The Regulation of Carbon Utilization in Streptomyces
链霉菌碳利用的调控
  • 批准号:
    9316912
  • 财政年份:
    1994
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Continuing Grant
The Regulation of Gene Expression in Streptomyces: ROW Award
链霉菌基因表达调控:ROW 奖
  • 批准号:
    9196067
  • 财政年份:
    1991
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Continuing Grant
The Regulation of Gene Expression in Streptomyces: ROW Award
链霉菌基因表达调控:ROW 奖
  • 批准号:
    8803899
  • 财政年份:
    1988
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

菜蝽积累宿主植物化学防御物质的独特适应性机制研究
  • 批准号:
    32371698
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于植硅石独特矿物组成构建纳米粒子破乳剂及其对原油乳液的破乳行为
  • 批准号:
    52364027
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
人类足细胞独特抗衰老机制的鉴定及其与损伤关系的研究
  • 批准号:
    82370714
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有杀虫活性的抗独特型抗体制备研究
  • 批准号:
    32311530060
  • 批准年份:
    2023
  • 资助金额:
    10.00 万元
  • 项目类别:
    国际(地区)合作研究与交流项目
海南凤仙花适应喀斯特水分时空异质性生境的独特水分平衡机制
  • 批准号:
    32371959
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

BCCMA: Overcoming chemoresistance in ovarian cancer: Targeting Unique Vulnerabilities in Neuroendocrine-like Ovarian Cancer Cells
BCCMA:克服卵巢癌的化疗耐药性:针对神经内分泌样卵巢癌细胞的独特弱点
  • 批准号:
    10701594
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
Understanding the unique dependency for MCL1 in Ven/Aza resistant AML
了解 MCL1 在 Ven/Aza 耐药 AML 中的独特依赖性
  • 批准号:
    10671482
  • 财政年份:
    2022
  • 资助金额:
    $ 89.99万
  • 项目类别:
Understanding the unique dependency for MCL1 in Ven/Aza resistant AML
了解 MCL1 在 Ven/Aza 耐药 AML 中的独特依赖性
  • 批准号:
    10535785
  • 财政年份:
    2022
  • 资助金额:
    $ 89.99万
  • 项目类别:
The impact of environmental enteric dysfunction on the growth and energy expenditure of school-age children: analysis of unique longitudinal data and finger-prick dried blood spot biomarkers
环境肠功能障碍对学龄儿童生长和能量消耗的影响:独特纵向数据和指尖刺干血斑生物标志物分析
  • 批准号:
    10437220
  • 财政年份:
    2022
  • 资助金额:
    $ 89.99万
  • 项目类别:
Unravelling the unique metabolic mitochondrial developmental features of neonatal CD4 T cells
揭示新生儿 CD4 T 细胞独特的代谢线粒体发育特征
  • 批准号:
    454641
  • 财政年份:
    2021
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了