EAGER: XAISE: Explainable Artificial Intelligence for Science and Engineering

EAGER:XAISE:科学与工程领域的可解释人工智能

基本信息

  • 批准号:
    2331329
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The increasing availability of data from the first three paradigms of science (experiments, theory, and simulations), along with advances in artificial intelligence and machine learning (AI/ML) has offered unprecedented opportunities for accelerating scientific discoveries using data-driven science. In particular Deep Learning (DL) has emerged as a transformative technology for deriving insights from massive datasets in many scientific domains such as material science, life-science, drug design etc. However, interpretability and explainability of DL models remains a major issue and an open problem. The need for explainable AI is often crucial in science and engineering, with applications of national importance such as materials design, construction, transportation, health-sciences, energy storage, etc., where the cost of wrong decisions can be catastrophically large, making it critical to ensure that the model is not just quantitatively accurate but is in fact learning from the correct features, and learning things that make sense in an understandable manner. But an abstract view of explanability is extremely difficult, because explanation also requires context within the application domain. This project seeks to develop addresses explanability within the use of DL by incorporating and utilizing context from scientific application domains and by exploring traditional machine learning techniques. This project seeks to explore and investigate an approach of ML-DL integration to realize explainable AI in terms of the four NIST (National Institute of Standards and Technology) principles. The specific goals of this project are: to design, develop, and implement XAISE – a framework to enhance the explainability of AI models for science and engineering applications with minimal impact on accuracy; to adapt XAISE for heterogenous data types, e.g., numerical, images, etc.; to scale XAISE to be able to handle large, multi-dimensional data; and evaluate the applicability of XAISE for at least two application domains, including materials science and nanotechnology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从第一的数据范式(实验,理论和仿真)中的数据越来越多,智能和机器学习(AI/ML)为使用数据驱动的Iens提供了加速科学发现的机会(DL)。 )已成为一种变革性的一种变革性,用于从许多科学领域,生命科学,药物设计等中的大量数据集中获得见解。但是,DL模型的可解释性和可解释性仍然是一个主要问题,并且开放的需求是可解释的AI是OS的OS。科学和工程,具有国家重要性的应用,例如材料,侵害,运输,健康科学,能源储存等,整个错误决策的成本可能是灾难性的,使该模型对模型至关重要,不仅是定量的,而且是实际上,从正确的特征中,帽子以可觉得的方式有意义。 AI在四个NIST(国家标准和技术研究所)原则方面。为了适应异源数据类型,例如,Xaise的适用性,包括材料科学和纳米技术优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alok Choudhary其他文献

Accelerating Data Mining Workloads: Current Approaches and Future Challenges in System Architecture Design
加速数据挖掘工作负载:系统架构设计的当前方法和未来挑战
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Pisharath;†. JosephZambreno;Berkin ¨Ozıs.;†. ıkyılmaz;Alok Choudhary
  • 通讯作者:
    Alok Choudhary
College of Engineering and ComputerScience 1-1-1994 PASSION Runtime Library for Parallel I / O
工程与计算机科学学院 1-1-1994 PASSION 并行 I/O 运行时库
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajeev Thakur;R. Bordawekar;Alok Choudhary;R. Ponnusamy;Rajeev Thakur;R. Bordawekar;Tarvinder Singh
  • 通讯作者:
    Tarvinder Singh

Alok Choudhary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alok Choudhary', 18)}}的其他基金

SHF: Medium: Collaborative Research: Scalable Algorithms for Spatio-temporal Data Analysis
SHF:中:协作研究:时空数据分析的可扩展算法
  • 批准号:
    1409601
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Scalable Big Data Analytics
EAGER:可扩展的大数据分析
  • 批准号:
    1343639
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Discovering Knowledge from Scientific Research Networks
EAGER:从科学研究网络中发现知识
  • 批准号:
    1144061
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Travel Support for Workshop: Reaching Exascale in this Decade to be Co-Located with International Conference on High-Performance Computing (HiPC 2010)
研讨会差旅支持:在这十年内达到百亿亿次规模,与高性能计算国际会议 (HiPC 2010) 同期举办
  • 批准号:
    1043085
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: An Application Driven I/O Optimization Approach for PetaScale Systems and Scientific Discoveries
协作研究:针对 PetaScale 系统和科学发现的应用驱动 I/O 优化方法
  • 批准号:
    0938000
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Climate Change: A Data Driven Approach
合作研究:了解气候变化:数据驱动的方法
  • 批准号:
    1029166
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CT-M: Hardware Containers for Software Components - Detection and Recovery at the Hardware/Software Interface
合作研究:CT-M:软件组件的硬件容器 - 硬件/软件接口的检测和恢复
  • 批准号:
    0830927
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
DC: Medium: Collaborative Research: ELLF: Extensible Language and Library Frameworks for Scalable and Efficient Data-Intensive Applications
DC:媒介:协作研究:ELLF:用于可扩展且高效的数据密集型应用程序的可扩展语言和库框架
  • 批准号:
    0905205
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Data- and Analytics Driven Fault-tolerance and Resiliency Strategies for Peta-Scale Systems
数据和分析驱动的千万亿级系统容错和弹性策略
  • 批准号:
    0956311
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Advanced Compiler Optimizations and Programming Language Enhancements for Petascale I/O and Storage
协作研究:针对 Petascale I/O 和存储的高级编译器优化和编程语言增强
  • 批准号:
    0833131
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了