SHF: Medium: Collaborative Research: Scalable Algorithms for Spatio-temporal Data Analysis
SHF:中:协作研究:时空数据分析的可扩展算法
基本信息
- 批准号:1409601
- 负责人:
- 金额:$ 70.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Acceleration of computing power of supercomputers along with development and deployment of large instruments such as telescopes, colliders, sensors and devices raises one fundamental question. "Can the time to insight and knowledge discovery be reduced at the same exponential rate?" The answer currently is clearly "NO", because a critical step that combines analytics, mining and discovering knowledge from the massive datasets has lagged far behind advances in software, simulation and generation of data. Analysis of data requires "data-driven" computing and analytics. This entails scalable software for data reduction, approximations, analysis, statistics, and bottom-up discovery. Scalable and parallel analytics software for processing large amount of data is required in order to make a significant leap forward in scientific discoveries. This project develops innovative, scalable, and sustainable data analytics algorithms to enable analysis and mining of massive data on high-performance parallel computers, which include (1) bottom-up and unsupervised data clustering algorithms that are suitable for spatio-temporal data, massive graph analytics, community computations, and detection of patterns in time-varying graphs, different types of data, and different data characteristics; (2) change detection and anomaly detection in spatio-temporal data; and (3) tracking moving data and cluster dynamics within certain time and space constraints. These parallel algorithms use the massive amount of data generated from scientific applications, such as astrophysics, cosmology simulations, climate modeling, and social networking analysis, for result verification and performance evaluation on modern high-performance parallel computers.This project directly addresses the critical needs for spatio-temporal data analysis, performance scalability, and programming productivity of large-scale scientific discovery via parallel analytics software for big data. This work will impact applications of enormous societal benefits and scientific importance such as climate understanding, environmental sustainability, astrophysics, biology and medicine by accelerating scientific discoveries. Furthermore, the developed software infrastructure can be used and adopted in commercial applications, such as commerce, social, security, drug discovery, and so on. The source codes are open to the public for all community to adapt, build-upon, customize and contribute to, thereby multiplying its value and usage.
超级计算机计算能力的加速度以及望远镜,山脉,传感器和设备等大型工具的开发和部署提出了一个基本问题。 “可以以相同的指数率减少洞察力和知识发现的时间吗?”当前的答案显然是“否”的,因为结合了分析,采矿和发现大量数据集知识的关键步骤远远落后于软件,模拟和生成数据的进步。数据分析需要“数据驱动”计算和分析。这需要可扩展的软件,以减少数据,近似,分析,统计和自下而上发现。为了在科学发现中取得重大飞跃,需要进行大量数据来处理大量数据。该项目开发了创新,可扩展和可持续的数据分析算法,以启用有关高性能平行计算机的大量数据的分析和挖掘,其中包括(1)适用于时空数据,社区数据和检测图的图形,包括(1)适用于时空数据的自下而上和无监督的数据群集算法,适用于时空数据,以及不同的图形图。 (2)在时空数据中更改检测和异常检测; (3)在特定时间和空间约束中跟踪移动数据和群集动态。这些平行算法使用从科学应用中产生的大量数据,例如天体物理学,宇宙学模拟,气候建模和社交网络分析,对现代高性能平行计算机的结果验证和绩效评估。该项目直接解决空间数据分析的关键需求,以实现大量数据分析,绩效分析性分析,并确定大型分析。这项工作将通过加速科学发现来影响巨大的社会利益和科学重要性的应用,例如气候理解,环境可持续性,天体物理学,生物学和医学。此外,可以在商业应用中使用和采用开发的软件基础架构,例如商业,社会,安全,药物发现等。源代码向公众开放,以供所有社区适应,建立,自定义和贡献,从而增加其价值和用法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Alok Choudhary其他文献
Enhancing efficiency and interpretability: A multi-objective dispatching strategy for autonomous service vehicles in ride-hailing
- DOI:10.1016/j.cie.2024.11038510.1016/j.cie.2024.110385
- 发表时间:2024-08-012024-08-01
- 期刊:
- 影响因子:
- 作者:Yuhan Guo;Wenhua Li;Linfan Xiao;Alok Choudhary;Hamid AllaouiYuhan Guo;Wenhua Li;Linfan Xiao;Alok Choudhary;Hamid Allaoui
- 通讯作者:Hamid AllaouiHamid Allaoui
Accelerating Data Mining Workloads: Current Approaches and Future Challenges in System Architecture Design
加速数据挖掘工作负载:系统架构设计的当前方法和未来挑战
- DOI:
- 发表时间:20062006
- 期刊:
- 影响因子:0
- 作者:J. Pisharath;†. JosephZambreno;Berkin ¨Ozıs.;†. ıkyılmaz;Alok ChoudharyJ. Pisharath;†. JosephZambreno;Berkin ¨Ozıs.;†. ıkyılmaz;Alok Choudhary
- 通讯作者:Alok ChoudharyAlok Choudhary
College of Engineering and ComputerScience 1-1-1994 PASSION Runtime Library for Parallel I / O
工程与计算机科学学院 1-1-1994 PASSION 并行 I/O 运行时库
- DOI:
- 发表时间:20112011
- 期刊:
- 影响因子:0
- 作者:Rajeev Thakur;R. Bordawekar;Alok Choudhary;R. Ponnusamy;Rajeev Thakur;R. Bordawekar;Tarvinder SinghRajeev Thakur;R. Bordawekar;Alok Choudhary;R. Ponnusamy;Rajeev Thakur;R. Bordawekar;Tarvinder Singh
- 通讯作者:Tarvinder SinghTarvinder Singh
共 3 条
- 1
Alok Choudhary的其他基金
EAGER: XAISE: Explainable Artificial Intelligence for Science and Engineering
EAGER:XAISE:科学与工程领域的可解释人工智能
- 批准号:23313292331329
- 财政年份:2023
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
EAGER: Scalable Big Data Analytics
EAGER:可扩展的大数据分析
- 批准号:13436391343639
- 财政年份:2013
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
EAGER: Discovering Knowledge from Scientific Research Networks
EAGER:从科学研究网络中发现知识
- 批准号:11440611144061
- 财政年份:2011
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Travel Support for Workshop: Reaching Exascale in this Decade to be Co-Located with International Conference on High-Performance Computing (HiPC 2010)
研讨会差旅支持:在这十年内达到百亿亿次规模,与高性能计算国际会议 (HiPC 2010) 同期举办
- 批准号:10430851043085
- 财政年份:2010
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: An Application Driven I/O Optimization Approach for PetaScale Systems and Scientific Discoveries
协作研究:针对 PetaScale 系统和科学发现的应用驱动 I/O 优化方法
- 批准号:09380000938000
- 财政年份:2010
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Understanding Climate Change: A Data Driven Approach
合作研究:了解气候变化:数据驱动的方法
- 批准号:10291661029166
- 财政年份:2010
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: CT-M: Hardware Containers for Software Components - Detection and Recovery at the Hardware/Software Interface
合作研究:CT-M:软件组件的硬件容器 - 硬件/软件接口的检测和恢复
- 批准号:08309270830927
- 财政年份:2009
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Continuing GrantContinuing Grant
DC: Medium: Collaborative Research: ELLF: Extensible Language and Library Frameworks for Scalable and Efficient Data-Intensive Applications
DC:媒介:协作研究:ELLF:用于可扩展且高效的数据密集型应用程序的可扩展语言和库框架
- 批准号:09052050905205
- 财政年份:2009
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Data- and Analytics Driven Fault-tolerance and Resiliency Strategies for Peta-Scale Systems
数据和分析驱动的千万亿级系统容错和弹性策略
- 批准号:09563110956311
- 财政年份:2009
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Advanced Compiler Optimizations and Programming Language Enhancements for Petascale I/O and Storage
协作研究:针对 Petascale I/O 和存储的高级编译器优化和编程语言增强
- 批准号:08331310833131
- 财政年份:2008
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:24031342403134
- 财政年份:2024
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:24028042402804
- 财政年份:2024
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:24034082403408
- 财政年份:2024
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:24238132423813
- 财政年份:2024
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:24028062402806
- 财政年份:2024
- 资助金额:$ 70.93万$ 70.93万
- 项目类别:Standard GrantStandard Grant