Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
基本信息
- 批准号:2329250
- 负责人:
- 金额:$ 33.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As groundwater moves through the subsurface, it often undergoes chemical reactions as it mixes with other chemically distinct waters, which can facilitate the breakdown of pollutants into less harmful substances. These critical processes of mixing and reaction are significantly influenced by unsaturated conditions, where soil and sediment layers contain phases other than water, such as air or gas, within their pores. This project aims to investigate and quantify how flow, transport, and mixing are impacted by unsaturated conditions in subsurface hydrologic systems. Specifically, the project will use new experimental imaging methods in 3D-printed soil structures and novel numerical simulations to visualize and predict how fluids interact and explore how variations in water content and the physical characteristics of the porous matrix influence mixing and reaction outcomes. Collectively, this research will provide a robust scientific foundation for water resource management and advancing water science, ensuring the protection and sustainability of groundwater resources. Moreover, the project will facilitate impactful educational and training opportunities for students across all levels, complemented by public outreach and initiatives to enhance STEM education. This project will develop and use novel experimental techniques and mathematical models aimed at understanding the complexities of reactive transport in partially saturated porous media. The research focuses on investigating and quantifying the interrelated phenomena of anomalous transport, mixing, and chemical reaction in unsaturated porous media, combining pore- and Darcy-scale visual laboratory experiments and direct numerical simulations. The primary objectives include: 1) Investigating the effects of flow dynamics, medium heterogeneity, and the distribution of fluid phases on solute transport and dispersion using experimental observations in three-dimensional porous media. 2) Utilizing experimental data to assess the role of saturation in promoting reaction hotspots and enhancing mixing processes. 3) Employing pore-scale properties, flow and transport statistics, and reaction rates in reactive transport models to mechanistically describe and predict mixing and reaction. The project results will be relevant for the improved prediction and management of contamination of water resources that rely on the transport and mixing of chemicals to target polluted locations.This award is co-funded by the Hydrologic Sciences program and Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当地下水流经地下时,它与其他化学性质不同的水混合时经常会发生化学反应,这可以促进污染物分解成危害较小的物质。这些混合和反应的关键过程受到不饱和条件的显着影响,在不饱和条件下,土壤和沉积物层的孔隙内含有除水以外的相,例如空气或气体。该项目旨在调查和量化地下水文系统中不饱和条件对流动、传输和混合的影响。具体来说,该项目将在 3D 打印土壤结构中使用新的实验成像方法和新颖的数值模拟来可视化和预测流体如何相互作用,并探索含水量的变化和多孔基质的物理特性如何影响混合和反应结果。总的来说,这项研究将为水资源管理和推进水科学提供坚实的科学基础,确保地下水资源的保护和可持续性。此外,该项目将为各级学生提供有影响力的教育和培训机会,并辅以公共宣传和加强 STEM 教育的举措。该项目将开发和使用新颖的实验技术和数学模型,旨在了解部分饱和多孔介质中反应传输的复杂性。该研究的重点是结合孔隙和达西尺度的视觉实验室实验和直接数值模拟,研究和量化不饱和多孔介质中的异常输运、混合和化学反应的相互关联现象。主要目标包括: 1) 利用三维多孔介质中的实验观察来研究流动动力学、介质非均质性以及流体相分布对溶质传输和分散的影响。 2)利用实验数据评估饱和度在促进反应热点和增强混合过程中的作用。 3)利用反应传输模型中的孔隙尺度特性、流动和传输统计数据以及反应速率来机械地描述和预测混合和反应。该项目的结果将有助于改进水资源污染的预测和管理,这些污染依赖于化学品的运输和混合到目标污染地点。该奖项由水文科学计划和刺激竞争研究既定计划( EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lazaro Perez其他文献
Lazaro Perez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
黄土高原小流域植被格局对侵蚀产沙影响的定量表征与耦合关系
- 批准号:41877073
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
覆被格局演变对流域水沙过程的影响机理与定量解析
- 批准号:41701207
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
流域景观格局对非点源污染影响的定量评估-以辽宁省汤河流域为例
- 批准号:41701208
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
多源定量降水估计(QPE)及其对洪水过程模拟影响的水文学评估
- 批准号:41775106
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
流域植被变化对径流成分演变影响的定量识别研究
- 批准号:41601035
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CAS-Climate: The Hydrologic Connection between Permafrost-Plateaus and Thaw-Bogs: Impact on Methane Emissions
合作研究:CAS-气候:永久冻土高原和解冻沼泽之间的水文联系:对甲烷排放的影响
- 批准号:
2143928 - 财政年份:2022
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: The Hydrologic Connection between Permafrost-Plateaus and Thaw-Bogs: Impact on Methane Emissions
合作研究:CAS-气候:永久冻土高原和解冻沼泽之间的水文联系:对甲烷排放的影响
- 批准号:
2142464 - 财政年份:2022
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
CAREER: The Impact of Hydrologic State on CO2 Flux and Acidification in Subtropical Estuaries
职业:水文状态对亚热带河口二氧化碳通量和酸化的影响
- 批准号:
1654232 - 财政年份:2017
- 资助金额:
$ 33.39万 - 项目类别:
Continuing Grant
Assessing the impact of vegetation on hydrologic flow paths in managed semi-arid ecosystems
评估植被对管理的半干旱生态系统水文流动路径的影响
- 批准号:
DDG-2016-00038 - 财政年份:2017
- 资助金额:
$ 33.39万 - 项目类别:
Discovery Development Grant
Assessing the impact of vegetation on hydrologic flow paths in managed semi-arid ecosystems
评估植被对管理的半干旱生态系统水文流动路径的影响
- 批准号:
DDG-2016-00038 - 财政年份:2016
- 资助金额:
$ 33.39万 - 项目类别:
Discovery Development Grant