IHBEM: Using socioeconomic, behavioral and environmental data to understand disease dynamics: exploring COVID-19 outcomes in Oklahoma

IHBEM:利用社会经济、行为和环境数据了解疾病动态:探索俄克拉荷马州的 COVID-19 结果

基本信息

  • 批准号:
    2327844
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

One of the most critical modern challenges is to better understand the where, why and how oflarge disease outbreak occurrence. Research shows that the frequency of large disease outbreaks is increasing over time globally, and yet differences in outcomes remain poorly understood. This research will explore the factors that drove variation in COVID-19 outcomes across the counties and metropolitan areas of Oklahoma, particularly which areas had more or fewer cases than would be expected based on their overall population size. The investigators will look at both environmental factors, such as weather patterns and air quality, and socioeconomic factors such as numbers of doctors and differences in the proportion of individuals that were willing to be vaccinated. The investigators will also conduct surveys of individual across the state to try and better understand why people made the healthcare choices that they did and how behavior drove differences in outcomes. Understanding all of these factors requires a team with diverse expertise. Traditionally, most mathematical and quantitative models for disease dynamics have been developed and studied by mathematicians, ecologists, and computer scientists. However, understanding differences in attitudes towards health care measures and how they originate is more the purview of social scientists and historians. By building a team of collaborators spanning all of these disciplines, the research team will be able to build a more complete picture of COVID-19 outcomes in Oklahoma. This will in turn suggest what actions may be most effective to try and best mitigate the effects of both COVID and other large-scale disease events in the future. The final product of this work will include a new data repository and a public-facing intelligent epidemiological modeling platform powered by Jupyter Notebooks. The project will also provide outreach and training, including to students from underrepresented groups.Increases in outbreak frequency seem to be related to globalization and other human activities. Yet the effects of most human behavioral, social and economic factors on outbreak risk are rarely quantified. Relevant social factors can be hard to measure, often needing specialists to generate and interpret data. However social scientists with expertise to do so are rarely trained in mathematical modelling of disease dynamics. To address these challenges, the investigators will focus on developing data sources and mathematical models that can be used to explore COVID-19 outcomes in Oklahoma. The project will be a true collaboration between social scientists and experts in modelling infectious diseases. Oklahoma is understudied, and is spatially heterogeneous such that models of disease dynamics in Oklahoma are likely to be generalizable to many other regions of the US. The Investigators will generate protocols for standardizing existing data on behavioral and socioeconomic factors as well as develop new data sources. The team will develop statistical models of past outbreaks, and mathematical models reflecting factors shown to have driven COVID-19 dynamics empirically. The latter work will demonstrate how baseline SIR-like models can be modified to reflect human behavioral factors. The Investigators will also contrast the performance of models based on existing data on socioeconomic factors with models incorporating new survey data on variation in behaviors and attitudes related to primary and secondary prevention. The code and datasets to be generated will be made freely available and searchable in an intelligent epidemiological modeling framework, which will enable other researchers to easily iterate on them.This project is jointly funded by the Division of Mathematical Sciences (DMS) in the Directorate of Mathematical and Physical Sciences (MPS) and the Division of Social and Economic Sciences (SES) in the Directorate of Social, Behavioral and Economic Sciences (SBE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代最关键的挑战之一是更好地了解大规模疾病暴发的地点、原因和方式。研究表明,随着时间的推移,全球大型疾病爆发的频率正在增加,但人们对结果的差异仍然知之甚少。 这项研究将探讨导致俄克拉荷马州各县和大都市区 COVID-19 结果发生变化的因素,特别是哪些地区的病例数比根据其总体人口规模预期的多或少。 研究人员将关注天气模式和空气质量等环境因素,以及医生数量和愿意接种疫苗的个人比例差异等社会经济因素。 研究人员还将对全州的个人进行调查,试图更好地了解人们为何做出这样的医疗选择,以及行为如何导致结果差异。了解所有这些因素需要一支具有不同专业知识的团队。传统上,大多数疾病动力学的数学和定量模型都是由数学家、生态学家和计算机科学家开发和研究的。然而,了解人们对医疗保健措施的态度差异及其起源更多是社会科学家和历史学家的职权范围。通过建立一个涵盖所有这些学科的合作者团队,研究团队将能够更全面地了解俄克拉荷马州的 COVID-19 结果。这反过来将表明哪些行动可能最有效地尝试并最好地减轻未来新冠肺炎和其他大规模疾病事件的影响。这项工作的最终产品将包括一个新的数据存储库和一个由 Jupyter Notebooks 提供支持的面向公众的智能流行病学建模平台。该项目还将提供外展和培训,包括针对代表性不足群体的学生。疫情爆发频率的增加似乎与全球化和其他人类活动有关。然而,大多数人类行为、社会和经济因素对疫情风险的影响很少被量化。 相关的社会因素可能难以衡量,通常需要专家来生成和解释数据。 然而,拥有这方面专业知识的社会科学家很少接受过疾病动力学数学建模方面的培训。 为了应对这些挑战,研究人员将重点开发可用于探索俄克拉荷马州 COVID-19 结果的数据源和数学模型。 该项目将是社会科学家和传染病建模专家之间的真正合作。 俄克拉荷马州的研究还不够充分,并且在空间上具有异质性,因此俄克拉荷马州的疾病动态模型可能会推广到美国许多其他地区。研究人员将制定协议,对行为和社会经济因素的现有数据进行标准化,并开发新的数据源。该团队将开发过去爆发的统计模型,以及反映已证明推动 COVID-19 动态的因素的数学模型。 后一项工作将展示如何修改类似 SIR 的基线模型以反映人类行为因素。研究人员还将基于现有社会经济因素数据的模型与纳入一级和二级预防相关行为和态度变化的新调查数据的模型的性能进行对比。 生成的代码和数据集将在智能流行病学建模框架中免费提供和搜索,这将使其他研究人员能够轻松地对其进行迭代。该项目由数学科学部(DMS)联合资助数学和物理科学 (MPS) 以及社会、行为和经济科学理事会 (SBE) 下的社会和经济科学部 (SES)。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Stephens其他文献

Patrick Stephens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Stephens', 18)}}的其他基金

RCN Proposal: Macroecology of Infectious Disease
RCN 提案:传染病宏观生态学
  • 批准号:
    1316223
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

煤矸石混凝土受弯构件使用性能与设计方法研究
  • 批准号:
    52378191
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于“空间-使用”影响机制的城市水敏性开放空间平灾复合的设计策划研究
  • 批准号:
    52308026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酒精使用障碍肠道微生物菌群特征及其色氨酸-犬尿氨酸代谢机制研究
  • 批准号:
    82371496
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
静脉溶栓治疗无效的缺血性卒中早期使用替罗非班治疗的多中心、双盲、双模拟、随机对照临床研究
  • 批准号:
    82371334
  • 批准年份:
    2023
  • 资助金额:
    74 万元
  • 项目类别:
    面上项目
使用单分子磁镊研究DNA纽结
  • 批准号:
    12374216
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
  • 批准号:
    10584245
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Using genomics and extensive phenotyping to dissect the relationships between substance use disorders and chronic pain
利用基因组学和广泛的表型分析来剖析物质使用障碍和慢性疼痛之间的关系
  • 批准号:
    10797779
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Linking genomic, physiological, and behavioral responses using a Drosophila model of heavy metal stress
使用重金属应激的果蝇模型将基因组、生理和行为反应联系起来
  • 批准号:
    10842536
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
  • 批准号:
    10724513
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Extraction of Vital Signs using a Telehealth Application for Asthma - EViTA-AThe purpose of this grant is to evaluate mobile devices to extract vitals signs to monitor patients with Asthma
使用哮喘远程医疗应用程序提取生命体征 - EViTA-A 这项拨款的目的是评估移动设备提取生命体征以监测哮喘患者
  • 批准号:
    10699530
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了