QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
基本信息
- 批准号:2326837
- 负责人:
- 金额:$ 175万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding fundamentally quantum phenomena is of high interest because those phenomena are important in applications that span from quantum information processing to magnetic resonance imaging. This project will explore electronic noise at the quantum scale, what environmental factors control it, and then how to control it by design. In the larger landscape of quantum technology research, this information will enable the design of effective quantum bits for information processing and biomedical sensing applications. Beyond science, this effort will build curricula focused on quantum information science and engineering (QISE) for wide distribution and organize a local QISE-focused workshop on understanding noise at the quantum level. The technical goal of this project is to enable fast, efficient profiling of magnetic noise at the atomic level. Noise at this scale is a critical challenge in the current state of quantum computers and sensors because noise causes decoherence which destroys a qubit’s utility. To deal with said noise, technologists need to understand it: what frequency is the noise, how loud is is, and what causes it. This project, comprising an interdisciplinary chemistry and physics team from University of Colorado Boulder and Colorado State University, will explore a new technique for the efficient characterization of noise and benchmark the new method with both solid-state qubits (like the NV center in diamond) and metal-containing molecules through spectroscopic and theoretical methods. These studies will extend the understanding of magnetic noise to an atomistic level beyond the border of what it currently known.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从根本上理解量子现象非常令人感兴趣,因为这些现象在从量子信息处理到磁共振成像的应用中都很重要,该项目将探索量子尺度的电子噪声、哪些环境因素控制它,以及如何控制它。在更大的量子技术研究领域,这些信息将使信息处理和生物医学传感应用的有效量子位设计成为可能。除了科学之外,这项工作还将建立以量子信息科学与工程(QISE)为重点的课程,并进行广泛传播。并组织一场以 QISE 为重点的当地研讨会,以加深理解该项目的技术目标是在原子水平上实现快速、有效的磁噪声分析,这种规模的噪声是当前量子计算机和传感器的一个关键挑战,因为噪声会导致退相干,从而破坏。为了处理所述噪声,技术人员需要了解它:噪声的频率是什么、噪声有多大以及产生噪声的原因。该项目由来自科罗拉多大学博尔德分校和科罗拉多州立大学的跨学科化学和物理团队组成。大学将探索一种有效表征噪声的新技术,并通过光谱和理论方法用固态量子位(如金刚石的 NV 中心)和含金属分子对新方法进行基准测试。这些研究将扩展对噪声的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Zadrozny其他文献
Joseph Zadrozny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Zadrozny', 18)}}的其他基金
CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
- 批准号:
2419717 - 财政年份:2024
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
Toward High Intensity Forbidden EPR Transitions In Bimetallic Complexes
双金属配合物中高强度禁止的 EPR 转变
- 批准号:
2419767 - 财政年份:2024
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
Toward High Intensity Forbidden EPR Transitions In Bimetallic Complexes
双金属配合物中高强度禁止的 EPR 转变
- 批准号:
2246814 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
- 批准号:
2047325 - 财政年份:2021
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QLC: EAGER: Toward Magnetic Selectivity with Molecular Clock Qubits
QLC:EAGER:利用分子时钟量子位实现磁选择性
- 批准号:
1836537 - 财政年份:2018
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 175万 - 项目类别:
Continuing Grant