QLC: EAGER: Toward Magnetic Selectivity with Molecular Clock Qubits
QLC:EAGER:利用分子时钟量子位实现磁选择性
基本信息
- 批准号:1836537
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, funded by the Chemical Structure, Dynamic & Mechanism B Program of the Chemistry Division, Professor Joseph M. Zadrozny of the Department of Chemistry at Colorado State University is developing new classes of metal complexes for the detection of physiological magnetic phenomena. These complexes are designed as molecular analogues to spin-based quantum bits (qubits) of a quantum computer. Molecular qubits are extremely sensitive to their local environment, a sensitivity that is to be suppressed for quantum computing applications. The proposed work will embark in a different direction by asking the fundamental question: Can the inherent sensitivity of molecular qubits be embraced to create new bioimaging sensors? Toward such application, it is desirable to focus the extreme sensitivity of a qubit toward specific environmental factors. This program will take the first fundamental steps toward that vision of selective sensitivity. Outreach activities as part of this project include the creation of a learning kit to instruct students at the K-12 level on fundamental magnetic phenomena. A nascent type of molecular qubits are the so-called clock qubits, which possess long spin-lattice and spin-spin relaxation times that result from a strong insensitivity to magnetic phenomena. This insensitivity stands as a stark counterpoint to conventional molecular qubits, which possess relaxation times that are strongly affected by local magnetism. The relative sensitivity of the two classes of qubits indicates an inherent tunability of susceptibility to nearby magnetism, potentially enabling relaxation-time-based sensing probes to be targeted toward only specific classes of environmental spins, e.g. those that occur in different types of biomolecules. In this work, a model system based on a V(IV) molecule qubit will explore fundamental questions at the heart of clock qubit behavior: (1) How do these systems interact with different classes of environmental nuclear spins? (2) How do these clock qubits interact with different classes of proximate electronic spins? Finally, (3) Is this interaction at all favored for certain classes of spins over others, and what are the factors that govern that favor? Each of these fundamental questions underlies the eventual development of targeted sensitivity toward specific types of spin-bearing biologically relevant molecules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在该项目中,由化学部化学结构、动力学和机理 B 项目资助,科罗拉多州立大学化学系的 Joseph M. Zadrozny 教授正在开发用于检测生理磁现象的新型金属配合物。这些复合物被设计为量子计算机基于自旋的量子位(量子位)的分子类似物。分子量子位对其局部环境极其敏感,这种敏感性在量子计算应用中需要被抑制。拟议的工作将通过提出一个基本问题向不同的方向出发:分子量子位的固有敏感性是否可以用来创建新的生物成像传感器?对于此类应用,需要将量子位对特定环境因素的极端敏感性集中起来。该计划将为实现选择性敏感性的愿景迈出第一个基本步骤。作为该项目一部分的外展活动包括创建学习套件,以指导 K-12 级别的学生了解基本磁现象。一种新兴的分子量子位是所谓的时钟量子位,它具有较长的自旋晶格和自旋-自旋弛豫时间,这是由于对磁现象的强烈不敏感性而产生的。这种不敏感性与传统分子量子位形成鲜明对比,传统分子量子位的弛豫时间受到局部磁性的强烈影响。两类量子位的相对灵敏度表明对附近磁性的敏感性具有固有的可调性,这有可能使基于弛豫时间的传感探针仅针对特定类别的环境自旋,例如。那些存在于不同类型的生物分子中的分子。在这项工作中,基于 V(IV) 分子量子位的模型系统将探索时钟量子位行为核心的基本问题:(1) 这些系统如何与不同类别的环境核自旋相互作用? (2) 这些时钟量子位如何与不同类别的邻近电子自旋相互作用?最后,(3)对于某些类型的旋转,这种相互作用是否比其他类型更有利?控制这种有利的因素是什么?这些基本问题中的每一个都构成了对特定类型的自旋生物学相关分子的针对性敏感性的最终发展的基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orientation dependence of phase memory relaxation in the V(IV) ion at high frequencies
高频 V(IV) 离子中相位记忆弛豫的方向依赖性
- DOI:10.1016/j.cplett.2019.137034
- 发表时间:2020
- 期刊:
- 影响因子:2.8
- 作者:Jackson, Cassidy E.;Lin, Chun-Yi;van Tol, Johan;Zadrozny, Joseph M.
- 通讯作者:Zadrozny, Joseph M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Zadrozny其他文献
Joseph Zadrozny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Zadrozny', 18)}}的其他基金
CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
- 批准号:
2419717 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Toward High Intensity Forbidden EPR Transitions In Bimetallic Complexes
双金属配合物中高强度禁止的 EPR 转变
- 批准号:
2419767 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Toward High Intensity Forbidden EPR Transitions In Bimetallic Complexes
双金属配合物中高强度禁止的 EPR 转变
- 批准号:
2246814 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
- 批准号:
2326837 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Robust Coherence and High Sensitivity in Metal-Ion Nuclear-Spin Qubits
职业:金属离子核自旋量子位的鲁棒相干性和高灵敏度
- 批准号:
2047325 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
渴望及其对农村居民收入差距的影响研究
- 批准号:71903117
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
- 批准号:71502075
- 批准年份:2015
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Toward Eco-Friendly Oceanography - Using Biodegradable Materials for Drifting Buoys
EAGER:迈向生态友好型海洋学 - 使用可生物降解材料制作漂流浮标
- 批准号:
2415106 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Toward a Decentralized Cross-administrator Zone Management System: Policy and Technology
EAGER:走向去中心化的跨管理员区域管理系统:政策和技术
- 批准号:
2331936 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Toward a Network-Based Framework for Analysis and Control of Inverter-Dominated Power Grids
EAGER:建立基于网络的逆变器主导电网分析和控制框架
- 批准号:
2333563 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Toward Attack-Resilient Statistical Inference
EAGER:迈向抗攻击统计推断
- 批准号:
2224150 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER: Toward unifying theories of living systems
渴望:统一生命系统理论
- 批准号:
2232049 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant