CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
基本信息
- 批准号:2326802
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Through nanomedicine significant methods are emerging to deliver drug molecules directly to diseased areas for cancer treatment. Targeted drug delivery is one of the most promising approaches which relies on nanoparticles (NPs) that carry and release drugs. The therapeutic efficacy of NP-based drug carriers is determined by the proper concentration of drug molecules at the lesion site. NPs need to be delivered directly to the diseased tissues while minimizing their uptake by other tissues, thereby reducing the potential harm to healthy tissue. Therefore, the design of these NPs and hence the efficacy of the targeted drug delivery could be significantly improved by understanding how the drugs carried by NPs are transported and dispersed in human body. This project proposes a set of computational tools to model and investigate the transport and dispersion of NPs in human vasculature. This, in turn, can provide better imaging sensitivity, therapeutic efficacy and lower toxicity of NP-based drug carriers. The multidisciplinary nature of the project also brings together concepts from biology, engineering and computer science to educate the next generation of computational biologists, scientists and engineers. This research, thus, aligns with the NSF mission to promote the progress of science and to advance the national health, prosperity and welfare. The technical objective of this project is to create a hybrid finite element and molecular dynamics computational approach for modeling NP transport and adhesion in human vasculature. The realistic geometry of vascular network and fluid dynamics of blood flow are accurately captured through the finite element model. The microscopic interactions between NPs and red blood cells within blood flow and adhesion of NPs to vessel wall are resolved through the molecular dynamics simulation. A robust and efficient coupling interface is built to couple the finite element and molecular dynamics solvers. Specifically, this project aims to 1) create a multiscale and multiphysics computational model for predicting the vascular dynamics of NPs under the influence of realistic geometrical and physiochemical features of human vasculature; 2) craft an interface coupling technique that enhances computational accuracy and predictability by coupling the finite element and molecular dynamics solvers; 3) build testsuits for multiscale and multiphysics simulations for coupled solution error and convergence analysis; and 4) advance the current cyberinfrastructure to accelerate the material design process and enrich the cyber-enabled materials design community. Such a computational method can be used to explore how the vascular dynamics of NPs will be affected by their size, shape, surface and stiffness properties, as well as complex geometry of human vasculature. The simulation results can further guide experimentalists to design NP-mediated drug delivery platforms that optimally accumulate within diseased tissue to provide better imaging sensitivity, therapeutic efficacy and lower toxicity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过纳米医学,正在出现重要的方法,可以将药物分子直接传递到患病区域进行癌症治疗。 靶向药物输送是依赖携带和释放药物的纳米颗粒(NP)的最有前途的方法之一。 基于NP的药物载体的治疗功效取决于病变部位的药物分子的适当浓度。 需要将NP直接传递到患病的组织中,同时最大程度地减少其他组织的摄取,从而减少对健康组织的潜在危害。 因此,通过了解如何将NP携带的药物运输和分散在人体中,可以显着改善这些NP的设计以及靶向药物递送的功效。 该项目提出了一组计算工具,以建模和研究人类脉管系统中NP的运输和分散。 反过来,这可以提供更好的成像敏感性,治疗功效和基于NP的药物载体的较低毒性。 该项目的多学科性质还汇集了生物学,工程和计算机科学的概念,以教育下一代计算生物学家,科学家和工程师。因此,这项研究符合NSF的使命,旨在促进科学进步并促进民族健康,繁荣和福利。该项目的技术目标是创建一种混合有限元和分子动力学计算方法,以建模人类脉管系统中的NP传输和粘附。 血流的血管网络和流体动力学的现实几何形状通过有限元模型准确捕获。 通过分子动力学模拟,解决了血流中NPS与红细胞之间的微观相互作用,而NP与血管壁的粘附进行了分辨。 建立了强大而有效的耦合界面,以对有限元素和分子动力学求解器进行融合。 具体而言,该项目的目的是1)创建一个多尺度和多物理计算模型,用于预测NP的血管动力学,这是人类脉管系统的现实几何和生理化学特征的影响; 2)制作一种界面耦合技术,该技术通过耦合有限元和分子动力学求解器来增强计算精度和可预测性; 3)建立用于多尺度和多物理模拟的测试,用于耦合解决方案误差和收敛分析; 4)推进当前的网络基础设施,以加速材料设计过程并丰富网络支持的材料设计社区。 这种计算方法可用于探索NP的血管动力学如何受其大小,形状,表面和刚度特性以及人类脉管系统的复杂几何形状的影响。 模拟结果可以进一步指导实验者设计NP介导的药物输送平台,这些平台在患病组织中最佳地积累,以提供更好的成像敏感性,治疗功效和较低的毒性。该奖项反映了NSF的法定任务,并通过使用该基金会的智力功能和广泛的影响来评估Criteria,并通过评估来进行评估。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning-based prediction for single-cell mechanics
- DOI:10.1016/j.mechmat.2023.104631
- 发表时间:2023-03
- 期刊:
- 影响因子:3.9
- 作者:Danh-Truong Nguyen;Lei Tao;Huilin Ye;Ying Li
- 通讯作者:Danh-Truong Nguyen;Lei Tao;Huilin Ye;Ying Li
Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration
两亲性 Janus 纳米粒子诱导的脂质双层破坏的计算研究:Janus 平衡和带电脂质浓度的综合影响
- DOI:10.1039/d3nr00403a
- 发表时间:2023
- 期刊:
- 影响因子:6.7
- 作者:Nguyen, Danh;Wu, James;Corrigan, Patrick;Li, Ying
- 通讯作者:Li, Ying
共 2 条
- 1
Ying Li其他文献
Vine tea extract ameliorated acute liver injury by inhibiting hepatic autophagy and reversing abnormal bile acid metabolism.
- DOI:10.1016/j.heliyon.2023.e2014510.1016/j.heliyon.2023.e20145
- 发表时间:2023-092023-09
- 期刊:
- 影响因子:4
- 作者:Ying Li;Ming-Wang Kong;Nan Jiang;Chen Ye;Xiao-Wei Yao;Xiao-Juan Zou;Hai-Ming Hu;Hong-Tao LiuYing Li;Ming-Wang Kong;Nan Jiang;Chen Ye;Xiao-Wei Yao;Xiao-Juan Zou;Hai-Ming Hu;Hong-Tao Liu
- 通讯作者:Hong-Tao LiuHong-Tao Liu
Dynamic changes of HVR1 quasispecies in chronic hepatitis C after IFN therapy
慢性丙型肝炎IFN治疗后HVR1准种的动态变化
- DOI:
- 发表时间:20032003
- 期刊:
- 影响因子:0
- 作者:Lin Zhang;G. Zhao;Ying Li;LiLin Zhang;G. Zhao;Ying Li;Li
- 通讯作者:LiLi
Impact of Z’ Boson on Pure Annihilation B Meson Decays
Z’玻色子对纯湮灭 B 介子衰变的影响
- DOI:
- 发表时间:20162016
- 期刊:
- 影响因子:0
- 作者:Ying LiYing Li
- 通讯作者:Ying LiYing Li
High-sensitive immunosensing of protein biomarker based on interfacial recognition-induced homogeneous exponential transcription
基于界面识别诱导同质指数转录的蛋白质生物标志物高灵敏免疫传感
- DOI:10.1016/j.aca.2019.03.05210.1016/j.aca.2019.03.052
- 发表时间:20192019
- 期刊:
- 影响因子:6.2
- 作者:Jie Teng;Lizhen Huang;Lutan Zhang;Jia Li;Huili Bai;Ying Li;Shijia Ding;Yuhong Zhang;Wei ChengJie Teng;Lizhen Huang;Lutan Zhang;Jia Li;Huili Bai;Ying Li;Shijia Ding;Yuhong Zhang;Wei Cheng
- 通讯作者:Wei ChengWei Cheng
Electrically pumped ultraviolet lasing in polygonal hollow microresonators: investigation on optical cavity effect
多边形空心微谐振器中的电泵浦紫外激光:光腔效应研究
- DOI:10.1364/ol.41.00560810.1364/ol.41.005608
- 发表时间:20162016
- 期刊:
- 影响因子:3.6
- 作者:Zhifeng Shi;Ying Li;Yuantao Zhang;Di Wu;Tingting Xu;Baolin Zhang;Lei Liang;Xinjian Li;Guotong DuZhifeng Shi;Ying Li;Yuantao Zhang;Di Wu;Tingting Xu;Baolin Zhang;Lei Liang;Xinjian Li;Guotong Du
- 通讯作者:Guotong DuGuotong Du
共 1968 条
- 1
- 2
- 3
- 4
- 5
- 6
- 394
Ying Li的其他基金
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:23322762332276
- 财政年份:2024
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:23137462313746
- 财政年份:2023
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Continuing GrantContinuing Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
- 批准号:23260722326072
- 财政年份:2023
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels
合作研究:纳米复合水凝胶的界面自修复
- 批准号:23144242314424
- 财政年份:2022
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:22050072205007
- 财政年份:2022
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Continuing GrantContinuing Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
- 批准号:23231082323108
- 财政年份:2022
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:23137542313754
- 财政年份:2022
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Continuing GrantContinuing Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
- 批准号:23162002316200
- 财政年份:2022
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:21538942153894
- 财政年份:2022
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Continuing GrantContinuing Grant
Elucidating the interplay between two chromatin regulators HDA8 and ELP3 in dynamic control of primary and secondary metabolic networks
阐明两个染色质调节因子 HDA8 和 ELP3 在初级和次级代谢网络动态控制中的相互作用
- 批准号:21234702123470
- 财政年份:2021
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:32160636
- 批准年份:2021
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:24144742414474
- 财政年份:2024
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:23484652348465
- 财政年份:2024
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:24033122403312
- 财政年份:2024
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
- 批准号:24025422402542
- 财政年份:2024
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:24032392403239
- 财政年份:2024
- 资助金额:$ 17.5万$ 17.5万
- 项目类别:Standard GrantStandard Grant