CCSS: Distributed Swarm Learning for Internet of Things at the Edge

CCSS:边缘物联网的分布式群体学习

基本信息

  • 批准号:
    2231209
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

With the vigorous growth of versatile Internet of Things (IoT) services, smart IoT devices are increasingly deployed at the edge of wireless IoT networks to perform collaborative machine learning tasks using locally collected data, giving rise to the edge learning paradigm. Because IoT networks have massive low-cost edge devices with limited capabilities and resources, IoT-driven edge learning faces major technical challenges caused by the communication bottleneck, data and device heterogeneity, non-convex optimization, privacy and security concerns, and dynamic operating environments. To overcome these challenges, this project builds a new framework of distributed swarm learning (DSL) through a holistic integration of artificial intelligence and biological swarm intelligence. The proposed DSL framework for edge learning is expected to benefit a wide range of IoT applications such as autonomous fleet management, massive wearable electronics, smart agriculture, to name a few. This project also provides broader societal impacts through student training, workforce development, research dissemination and outreach to minorities and local communities.This objective of this project is to develop an efficient distributed learning framework that coherently addresses the unique technical challenges related to swarm IoT with device restrictions and resource constraints on communication, computation and data, and in complicated edge environments with potential link failure, attacks, and topology changes. First, a new DSL framework is established by bridging federated learning with swarm optimization techniques. With theoretical backing, efficient information extraction and exchanging mechanisms are developed along with parsimonious transmission schemes for high efficiency in both communication and computation of model updates. Second, to cope with data heterogeneity, link failure and malicious attacks in practical IoT systems, robust DSL techniques are developed based on generative adversarial networks, multi-worker selection and analog transmission-and-aggregation techniques. Finally, to handle streaming data in an online fashion at the network edge, dynamic optimization techniques are investigated via the design of adaptive weights and exploration-exploitation strategies under the DSL framework. The outcomes of this research are expected to contribute to novel tools for learning and optimization tailored to real-time operation of large-scale IoT in dynamic environments, with technological impacts on statistical learning, signal processing and wireless communications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着多功能物联网(IoT)服务的蓬勃发展,智能物联网设备越来越多地部署在无线物联网网络边缘,利用本地收集的数据执行协作机器学习任务,从而催生了边缘学习范式。由于物联网网络拥有大量低成本边缘设备,但能力和资源有限,物联网驱动的边缘学习面临通信瓶颈、数据和设备异构性、非凸优化、隐私和安全问题以及动态操作环境带来的重大技术挑战。为了克服这些挑战,该项目通过人工智能和生物群体智能的整体集成,构建了分布式群体学习(DSL)的新框架。拟议的边缘学习 DSL 框架预计将有利于广泛的物联网应用,例如自主车队管理、大规模可穿戴电子产品、智能农业等。该项目还通过学生培训、劳动力发展、研究传播以及对少数群体和当地社区的推广,提供更广泛的社会影响。该项目的目标是开发一个高效的分布式学习框架,连贯地解决与带有设备的群体物联网相关的独特技术挑战通信、计算和数据的限制和资源限制,以及存在潜在链路故障、攻击和拓扑变化的复杂边缘环境。首先,通过将联邦学习与群体优化技术结合起来,建立了一个新的 DSL 框架。在理论支持下,开发了高效的信息提取和交换机制以及简约的传输方案,以实现模型更新的通信和计算的高效率。其次,为了应对实际物联网系统中的数据异构性、链路故障和恶意攻击,基于生成对抗网络、多工作器选择和模拟传输和聚合技术,开发了鲁棒的DSL技术。最后,为了在网络边缘以在线方式处理流数据,通过在DSL框架下设计自适应权重和探索利用策略来研究动态优化技术。这项研究的成果预计将有助于开发新的学习和优化工具,这些工具适合动态环境中大规模物联网的实时操作,并对统计学习、信号处理和无线通信产生技术影响。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Distributed Swarm Learning for Intelligent IoT
智能物联网的鲁棒分布式群体学习
Efficient Distributed Swarm Learning for Edge Computing
用于边缘计算的高效分布式群体学习
H-nobs: Achieving Certified Fairness and Robustness in Distributed Learning on Heterogeneous Datasets
H-nobs:在异构数据集的分布式学习中实现经过认证的公平性和鲁棒性
CB-DSL: Communication-efficient and Byzantine-robust Distributed Swarm Learning on Non-i.i.d. Data
CB-DSL:非独立同分布的通信高效且拜占庭鲁棒的分布式群体学习
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhi Tian其他文献

Segmented ternary composite control method considering time delay for high-speed and high-precision linear motor
高速高精度直线电机考虑时滞的分段三元复合控制方法
  • DOI:
    10.1016/j.precisioneng.2024.04.001
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weizhen Wang;Chi Zhang;Na Sang;Bin Zhao;Zhi Tian;Si;Guilin Yang
  • 通讯作者:
    Guilin Yang
Spectrum Transformer: Wideband Spectrum Sensing using Multi-Head Self-Attention
Spectrum Transformer:使用多头自注意力的宽带频谱传感
RobustCalib: Robust Lidar-Camera Extrinsic Calibration with Consistency Learning
RobustCalib:具有一致性学习的鲁棒激光雷达相机外部校准
  • DOI:
    10.48550/arxiv.2312.01085
  • 发表时间:
    2023-12-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuang Xu;Sifan Zhou;Zhi Tian;Jizhou Ma;Qiong Nie;Xiangxiang Chu
  • 通讯作者:
    Xiangxiang Chu
FCPose: Fully Convolutional Multi-Person Pose Estimation with Dynamic Instance-Aware Convolutions
FCPose:具有动态实例感知卷积的全卷积多人姿势估计
Aeromicrobium chenweiae sp. nov. and Aeromicrobium yanjiei sp. nov., isolated from Tibetan antelope (Pantholops hodgsonii) and plateau pika (Ochotona curzoniae), respectively.
陈氏产气微生物 sp.
  • DOI:
    10.1099/ijsem.0.004331
  • 发表时间:
    2020-07-21
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Junqin Li;Wenjing Lei;Jing Yang;Shan Lu;D. Jin;X. Lai;Sihui Zhang;Yanpeng Cheng;Fei Mi;Yuyuan Huang;Ji Pu;Kui Dong;Zhi Tian;Xiaomin Wu;Ying Huang;Suping Wang;Jianguo Xu
  • 通讯作者:
    Jianguo Xu

Zhi Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhi Tian', 18)}}的其他基金

Collaborative Research: SWIFT: Intelligent Dynamic Spectrum Access (IDEA): An Efficient Learning Approach to Enhancing Spectrum Utilization and Coexistence
合作研究:SWIFT:智能动态频谱接入 (IDEA):增强频谱利用和共存的有效学习方法
  • 批准号:
    2128596
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Intelligent Dynamic Spectrum Access (IDEA): An Efficient Learning Approach to Enhancing Spectrum Utilization and Coexistence
合作研究:SWIFT:智能动态频谱接入 (IDEA):增强频谱利用和共存的有效学习方法
  • 批准号:
    2128596
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF: Small: Communication-efficient and robust learning from distributed data
CIF:小型:从分布式数据中进行高效通信和稳健学习
  • 批准号:
    1939553
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Workshop: Promoting Broader Impacts of Research on Electrical, Communications and Cyber Systems; Holiday Inn Hotel, Arlington, Virginia, May 12-13, 2016
研讨会:促进电气、通信和网络系统研究的更广泛影响;
  • 批准号:
    1641369
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Energy-efficient Massive MIMO Processing for Millimeter-wave Communications
EAGER:用于毫米波通信的节能大规模 MIMO 处理
  • 批准号:
    1546604
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Signal Processing Research in Ultra Wideband Communications
职业:超宽带通信中的信号处理研究
  • 批准号:
    0238174
  • 财政年份:
    2003
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向分布式干线协调信号控制的多智能体博弈机制与自适应优化方法研究
  • 批准号:
    52302414
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
计及运行风险的智能配电网分布式协同日前优化控制方法研究
  • 批准号:
    52307132
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有限环上多智能体系统分布式协同控制的分析与研究
  • 批准号:
    12301573
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
模型不确定约束下分布式无人机蜂群跟踪方法研究
  • 批准号:
    62373112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
网络攻击下的信息物理系统分布式攻击检测与安全优化调度
  • 批准号:
    62373226
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Distributed Electric Propulsion
分布式电力推进
  • 批准号:
    2777203
  • 财政年份:
    2026
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Coordination of Action in Distributed, but Unequal, Bimanual Tasks
协调分布式但不平等的双手任务中的行动
  • 批准号:
    2341539
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了