Collaborative Research: First-Principle Control of Novel Resonances in Non-Hermitian Photonic Media

合作研究:非厄米光子介质中新型共振的第一性原理控制

基本信息

  • 批准号:
    2326699
  • 负责人:
  • 金额:
    $ 41.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Nontechnical description: This NSF award supports an integrated research, education, and outreach project that focuses on studying a novel behavior of light within solid materials. Optical science has long pursued the ability to manipulate various properties of light and other invisible waves, such as infrared light and microwaves. Traditional examples include bending light with mirrors and lenses and generating light with lasers and LEDs. This project adopts a unique approach by delving into the exploration of how the active property of optical materials, specifically their suitability for attenuation or amplification of light, can profoundly transform their interactions with the environment. This aspect, which has received limited investigation in the past, presents a compelling avenue for understanding and harnessing the dynamic behavior of light in novel ways. The outcomes of this investigation are expected to deliver a new type of light-matter interaction, thereby advancing our fundamental understanding of optics, physics, materials science, and optoelectronics. Moreover, by introducing a novel paradigm for how light perceives its environment, the project aims to significantly enhance the functionality of photonic devices used in optical communications and computing. This includes the development of an ultra-broadband tunable laser capable of achieving a wavelength tuning range surpassing the current state-of-the-art, by more than one order of magnitude. These advancements have far-reaching implications across industries and in our daily lives. Leveraging the resources of the City University of New York, the largest urban university system in the US, and the University of Pennsylvania, a national leader in education innovation, the researchers will collaborate with multiple outreach units to increase awareness and interest in modern optics and photonics among K-12 students in New York City and the greater Philadelphia area. This interdisciplinary project also provides valuable research opportunities for graduate, undergraduate, and advanced high-school students, with a focus on recruiting and mentoring students from underrepresented groups in STEM.Technical description: Traditionally, the interaction between light and matter occurs when an oscillating electromagnetic field resonantly engages with charged particles, such as dipoles in dielectrics. This interaction can be modeled using coupled oscillators, where the passive photonic modes represent the electromagnetic environment defined by the real part of the matter's refractive index. Two types of light-matter interactions are typically defined based on the coupling strength between matter and photonic modes. However, these definitions overlook an important aspect of matter: the imaginary part of the matter’s refractive index, i.e., optical gain and loss, which can significantly impact their interactions. In this collaborative project, the principal investigators aim to establish a complex non-Hermitian photonic environment through first-principle control of the imaginary part of the refractive index. The results showcase a novel type of light-matter interaction that is exclusively governed by the system's non-Hermiticity, arising from previously unexplored photonic active resonances. The project combines integrated theoretical and experimental research to design photonic active resonators through strategic waveguide mode engineering on the III-V semiconductor platform to unravel their unique properties and further leverage them for the development of robust intrinsic single-mode lasing with an ultra-broadband tunability. These advancements will lay the groundwork for a new generation of integrated photonic devices for optical communication and computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:该NSF奖支持集成的研究,教育和外展项目,该项目着重于研究实心材料中光的新型行为。长期以来,光学科学一直在追求操纵光和其他无形波的各种特性的能力,例如红外光和微波。传统的例子包括带有镜子和镜头的弯曲光,以及带有激光和LED的光。该项目通过深入研究光学材料(特别是其适合衰减或放大光)的活动性能如何深刻地改变其与环境的相互作用的探索,从而适应了一种独特的方法。过去获得有限的投资的这一方面为理解和利用新颖方式的动态行为提供了令人信服的途径。预计这项投资的结果将提供一种新型的轻度互动,从而促进我们对光学,物理,材料科学和光电的基本了解。此外,通过引入一种新颖的范式来了解光的感知环境,该项目旨在显着增强光学通信和计算中使用的光子设备的功能。这包括开发一个能够实现超过一个数量级的波长调谐范围,超过当前最新的波长调谐范围。这些进步在行业和我们的日常生活中具有深远的影响。利用纽约市城市大学的资源,美国最大的城市大学系统,以及宾夕法尼亚大学,是教育创新的全国领导者,研究人员将与多个外展单位合作,以提高纽约市K-12学生和更大的Philadelphia地区的现代光学和光子学的意识和兴趣。这个跨学科的项目还为研究生,本科和高级高中生提供了宝贵的研究机会,重点是招募和心理化的学生,来自代理中代表性不足的群体的学生。技术描述:传统上,当振荡的电子领域与充电的粒子互动时,光和物质之间的相互作用发生在词汇中,例如dip nictynary in Nictynicty。可以使用耦合振荡器对这种相互作用进行建模,其中被动光子模式代表由物质折射率的实际部分定义的电子环境。通常根据物质和光子模式之间的耦合强度来定义两种类型的光 - 物质相互作用。但是,这些定义忽略了物质的一个重要方面:物质折射率的虚构部分,即光损益和损失,这可能会对它们的相互作用产生重大影响。在这个合作项目中,主要研究人员旨在通过对折射率的虚构部分的第一本控制来建立复杂的非热光子环境。结果展示了一种新型的轻质 - 物质相互作用,该相互作用仅受系统的非热性,这是由以前出乎意料的光子活性共振引起的。该项目结合了综合的理论和实验研究,通过在IIII-V半导体平台上通过战略性波导模式工程设计光子主动谐振器,以揭示其独特的特性,并进一步利用它们,以开发具有超级式频带可强制性的强大内在单模性激光。这些进步将为新一代的光通信和计算综合光子设备奠定基础。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为是通过评估而被视为珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Feng其他文献

Diversity analysis and function prediction of rhizo- and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range
入侵范围内菊科千里光根际和内生细菌群落的多样性分析和功能预测
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Cheng;Zhongsai Tian;Liang Feng;Lin Xu;Hongmei Wang
  • 通讯作者:
    Hongmei Wang
Structural composition of components of Geoherb Moutan Cortex contributes to anti-diabetic nephropathy activity
土药牡丹皮成分的结构组成有助于抗糖尿病肾病活性
  • DOI:
    10.18632/oncotarget.23771
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liang Feng;Mao-Mao Zhu;Jun-Fei Gu;Ming-Hua Zhang;Chun-Fei Wang;Gang Wang;Jie Song;Xiaobin Tan;Yuanli Zhou;Juan Chen;Rong Li;Ling Qiao;Jia Song;Chaochao Wang;Li Zhang;Xiao-Bin Jia
  • 通讯作者:
    Xiao-Bin Jia
Cucurbituril mediated single molecule detection and identification via recognition tunneling
通过识别隧道介导的葫芦脲介导的单分子检测和识别
  • DOI:
    10.1088/1361-6528/aacb63
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Xiao Bohuai;Liang Feng;Liu Simin;Im JongOne;Li Yunchuan;Liu Jing;Zhang Bintian;Zhou Jianghao;He Jin;Chang Shuai
  • 通讯作者:
    Chang Shuai
Tunable topological charge vortex microlaser with ultrafast controllability
具有超快可控性的可调谐拓扑电荷涡旋微型激光器
  • DOI:
    10.1109/ipc47351.2020.9252407
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhifeng Zhang;Xingdu Qiao;B. Midya;Kevin Liu;Haoqi Zhao;Jingbo Sun;Tianwei Wu;D. G. Pires;Wenjing Liu;Zihe Gao;R. Agarwal;J. Jornet;S. Longhi;N. Litchinitser;Liang Feng
  • 通讯作者:
    Liang Feng
Topology-Preserving Nonlinear Structured Light Generation from All-Dielectric Metasurfaces
从全电介质超表面生成保持拓扑的非线性结构光
  • DOI:
    10.1364/cleo_fs.2023.fw3d.5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiannan Gao;Dmitrii Tsvetkov;D. G. Pires;Yun Xu;Ivan Kravchenko;Liang Feng;N. Litchinitser
  • 通讯作者:
    N. Litchinitser

Liang Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Feng', 18)}}的其他基金

MRI: Acquisition of an Electron-Beam Lithography Tool for Research, Education and Training
MRI:获取用于研究、教育和培训的电子束光刻工具
  • 批准号:
    2117775
  • 财政年份:
    2021
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
ASCENT: Collaborative Research: Programmable Photonic Computation Accelerators (PPCA)
ASCENT:协作研究:可编程光子计算加速器(PPCA)
  • 批准号:
    2023780
  • 财政年份:
    2020
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
CAREER: Topological Engineering for Active Photonic Structures and Devices
职业:有源光子结构和器件的拓扑工程
  • 批准号:
    1846766
  • 财政年份:
    2019
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Continuing Grant
New Microlasers: Structuring and Twisting Laser Radiations at a Microscale
新型微型激光器:在微尺度上构造和扭曲激光辐射
  • 批准号:
    1932803
  • 财政年份:
    2019
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Integrated Higher-Dimensional Quantum Photonic Platform
RAISE-EQuIP:集成高维量子光子平台
  • 批准号:
    1842612
  • 财政年份:
    2018
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
High spatial resolution tactile sensing imager using optical exceptional point structures
使用光学异常点结构的高空间分辨率触觉传感成像仪
  • 批准号:
    1811393
  • 财政年份:
    2017
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Rotation-Time and Inversion-Time Symmetries in Photonic Materials
合作研究:光子材料中旋转时间和反转时间对称性的研究
  • 批准号:
    1811370
  • 财政年份:
    2017
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Continuing Grant
Laser Chip Lithography-Patterned Nanomembranes for Wastewater Treatment
用于废水处理的激光芯片光刻图案化纳米膜
  • 批准号:
    1635026
  • 财政年份:
    2016
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Rotation-Time and Inversion-Time Symmetries in Photonic Materials
合作研究:光子材料中旋转时间和反转时间对称性的研究
  • 批准号:
    1506884
  • 财政年份:
    2015
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Continuing Grant
High spatial resolution tactile sensing imager using optical exceptional point structures
使用光学异常点结构的高空间分辨率触觉传感成像仪
  • 批准号:
    1507312
  • 财政年份:
    2015
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant

相似国自然基金

准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光自敏化驱动芳香类新污染物降解新途径的第一性原理研究
  • 批准号:
    22376220
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
共掺实现闪烁体性能调控的第一性原理研究
  • 批准号:
    12304445
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Janus磁性材料的二维多铁隧道结的第一性原理研究
  • 批准号:
    12304121
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型二维碲基和硒基材料结构预测和体光伏效应的第一性原理研究
  • 批准号:
    12304083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
  • 批准号:
    2321344
  • 财政年份:
    2023
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308669
  • 财政年份:
    2023
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Weaving Together Supports for the Academic Success and Racial Identity Development of Low Income and First Generation AA&NHPI Students
合作研究:共同支持低收入和第一代 AA 的学业成功和种族认同发展
  • 批准号:
    2315868
  • 财政年份:
    2023
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
GREAT: Collaborative Genomic Initiative between Prairie View A&M and Texas A&M Universities
伟大:Prairie View A 之间的基因组合作计划
  • 批准号:
    10666233
  • 财政年份:
    2023
  • 资助金额:
    $ 41.61万
  • 项目类别:
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
  • 批准号:
    2308670
  • 财政年份:
    2023
  • 资助金额:
    $ 41.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了