CRII: SCH: Characterizing, Modeling and Evaluating Brain Dynamics

CRII:SCH:大脑动力学特征描述、建模和评估

基本信息

  • 批准号:
    1758430
  • 负责人:
  • 金额:
    $ 14.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-15 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

Brain dynamics, which reflects the healthy or pathological states of the brain with quantifiable, reproducible, and indicative dynamics values, remains the least understood and studied area of brain science despite its intrinsic and critical importance to the brain. Unlike other brain information such as the structural and sequential dimensions that have all been extensively studied with models and methods successfully developed, the 5th dimension, dynamics, has only very recently started receiving systematic analysis from the research community. The state-of-the-art models suffer from several fundamental limitations that have critically inhibited the accuracy and reliability of the dynamic parameters' computation. First, dynamic parameters are derived from each voxel of the brain spatially independently, and thus miss the fundamental spatial information since the brain is ?connected?. Second, current models rely solely on single-patient data to estimate the dynamic parameters without exploiting the big medical data consisting of billions of patients with similar diseases. This project aims to develop a framework for data-driven brain dynamics characterization, modeling and evaluation that includes the new concept of a 5th dimension - brain dynamics - to complement the structural 4-D brain for a complete picture. The project studies how dynamic computing of the brain as a distinct problem from the image reconstruction and de-noising of convention models, and analyzes the impact of different models for the dynamics analysis. A data-driven, scalable framework will be developed to depict the functionality and dynamics of the brain. This framework enables full utilization of 4-D brain spatio-temporal data and big medical data, resulting in accurate estimations of the dynamics of the brain that are not reflected in the voxel-independent models and the single patient models. The model and framework will be evaluated on both simulated and real dual-dose computed tomography perfusion image data and then compared with the state-of-the-art methods for brain dynamics computation by leveraging collaborations with Florida International University Herbert Wertheim College of Medicine, NewYork-Presbyterian Hospital / Weill Cornell Medical College (WCMC) and Northwell School of Medicine at Hofstra University. The proposed research will significantly advance the state-of-the-art in quantifying and analyzing brain structure and dynamics, and the interplay between the two for brain disease diagnosis, including both the acute and chronic diseases. This unified approach brings together fields of Computer Science, Bioengineering, Cognitive Neuroscience and Neuroradiology to create a framework for precisely measuring and analyzing the 5th dimension - brain dynamics - integrated with the 4-D brain with three dimensions from spatial data and one dimension from temporal data. Results from the project will be incorporated into graduate-level multi-disciplinary courses in machine learning, computational neuroscience and medical image analysis. This project will open up several new research directions in the domain of brain analysis, and will educate and nurture young researchers, advance the involvement of underrepresented minorities in computer science research, and equip them with new insights, models and tools for developing future research in brain dynamics in a minority serving university.
脑动力学以可量化、可重复和指示性的动态值反映大脑的健康或病理状态,尽管它对大脑具有内在的和至关重要的重要性,但它仍然是脑科学中理解和研究最少的领域。与其他大脑信息(例如结构维度和顺序维度)不同,第五维度(动力学)最近才开始接受研究界的系统分析。最先进的模型存在几个基本限制,严重限制了动态参数计算的准确性和可靠性。首先,动态参数是从空间上独立的大脑的每个体素导出的,因此由于大脑是“连接的”而错过了基本的空间信息。其次,当前的模型仅依靠单个患者的数据来估计动态参数,而没有利用由数十亿患有类似疾病的患者组成的大医疗数据。该项目旨在开发一个数据驱动的大脑动力学表征、建模和评估框架,其中包括第五维度的新概念——大脑动力学——以补充结构性的 4 维大脑以获得完整的图像。该项目研究如何将大脑的动态计算作为与传统模型的图像重建和去噪不同的问题,并分析不同模型对动力学分析的影响。将开发一个数据驱动的、可扩展的框架来描述大脑的功能和动态。该框架能够充分利用4维大脑时空数据和大医学数据,从而准确估计体素无关模型和单个患者模型中未反映的大脑动态。该模型和框架将在模拟和真实双剂量计算机断层扫描灌注图像数据上进行评估,然后通过与佛罗里达国际大学赫伯特沃特海姆医学院的合作,与最先进的脑动力学计算方法进行比较,纽约长老会医院/威尔康奈尔医学院 (WCMC) 和霍夫斯特拉大学诺斯韦尔医学院。拟议的研究将显着推进量化和分析大脑结构和动力学以及两者之间的相互作用以诊断脑疾病(包括急性和慢性疾病)的最新技术。这种统一的方法汇集了计算机科学、生物工程、认知神经科学和神经放射学领域,创建了一个精确测量和分析第五维(大脑动力学)的框架,与具有空间数据的三个维度和时间数据的一维的 4 维大脑集成数据。该项目的结果将被纳入机器学习、计算神经科学和医学图像分析等研究生水平的多学科课程中。该项目将在大脑分析领域开辟几个新的研究方向,并将教育和培养年轻的研究人员,促进代表性不足的少数群体参与计算机科学研究,并为他们提供新的见解、模型和工具,以发展未来的研究一所少数族裔大学的大脑动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruogu Fang其他文献

Morphological profiling for drug discovery in the era of deep learning
深度学习时代药物发现的形态分析
  • DOI:
    10.1093/bib/bbae284
  • 发表时间:
    2024-05-23
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Qiaosi Tang;R. Ratnayake;Gustavo Seabra;Zhe Jiang;Ruogu Fang;Lina Cui;Yousong Ding;Tamer Kahveci;Jiang Bian;Chenglong Li;Hendrik Luesch;Yanjun Li
  • 通讯作者:
    Yanjun Li
Abdominal Adipose Tissues Extraction Using Multi-Scale Deep Neural Network
使用多尺度深度神经网络提取腹部脂肪组织
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Xiao-Yang Liu;Weiping Jia;Ping Li;Ruogu Fang
  • 通讯作者:
    Ruogu Fang
Robust Low-Dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization
通过张量总变差正则化实现稳健的低剂量 CT 灌注反卷积
  • DOI:
    10.1109/tmi.2015.2405015
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Ruogu Fang;Shaoting Zhang;Tsuhan Chen;Sanelli PC
  • 通讯作者:
    Sanelli PC
Texture and motion aware perception in-loop filter for AV1
AV1 的纹理和运动感知感知环路滤波器
  • DOI:
    10.1016/j.jvcir.2023.104025
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianqi Liu;Hong Huang;Zhijun Lei;Ruogu Fang;Dapeng O Wu
  • 通讯作者:
    Dapeng O Wu
A Comprehensive Survey of Foundation Models in Medicine
医学基础模型的综合综述
  • DOI:
  • 发表时间:
    2024-06-15
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Wasif Khan;Seowung Leem;Kyle B. See;Joshua K. Wong;Shaoting Zhang;Ruogu Fang
  • 通讯作者:
    Ruogu Fang

Ruogu Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruogu Fang', 18)}}的其他基金

NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
  • 批准号:
    2318984
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
III: Small: Modeling Multi-Level Connectivity of Brain Dynamics
III:小:模拟大脑动力学的多级连接
  • 批准号:
    1908299
  • 财政年份:
    2019
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
CRII: SCH: Characterizing, Modeling and Evaluating Brain Dynamics
CRII:SCH:大脑动力学特征描述、建模和评估
  • 批准号:
    1564892
  • 财政年份:
    2016
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant

相似国自然基金

基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
  • 批准号:
    42377063
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
  • 批准号:
    82170950
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
  • 批准号:
    11501137
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
  • 批准号:
    U1304102
  • 批准年份:
    2013
  • 资助金额:
    30.0 万元
  • 项目类别:
    联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
  • 批准号:
    30671181
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Open Access Block Award 2024 - London Sch of Hygiene & Tropic. Medicine
2024 年开放访问区块奖 - 伦敦卫生学院
  • 批准号:
    EP/Z532368/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - London Sch of Hygiene & Tropic. Medicine
2023 年开放访问区块奖 - 伦敦卫生学院
  • 批准号:
    EP/Y529825/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Research Grant
SCH: Neonatal Facial Coding for Pain Recognition Monitoring System (PRAMS)
SCH:新生儿面部编码疼痛识别监测系统 (PRAMS)
  • 批准号:
    2205472
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
SCH: Human-Centered Reinforcement Learning for Personalized Nutritional Coaching
SCH:以人为本的强化学习个性化营养指导
  • 批准号:
    2306690
  • 财政年份:
    2023
  • 资助金额:
    $ 14.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了