Collaborative Research: Mimicking Stress-Mediated Invasive Solid Tumor Using Bioprinted Microtissue and Acoustofluidics
合作研究:利用生物打印微组织和声流控技术模拟压力介导的侵袭性实体瘤
基本信息
- 批准号:2243507
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In solid tumors, chemical and physical signals lead to cancer cells invading nearby tissue and vascularized systems. A well-known physical signal is the interstitial fluid pressure in the tumor region, and existing tumor models have difficulties regulating such a volumetric pressure. It is known that tumor regions with high interstitial pressure typically resist the delivery of the anti-cancer drugs and therapeutics. The goal of this project is to create and study how interstitial pressure can regulate the tumor cell response in a biomimetic (biology mimicking) tumor model. Bioprinting technology and hydrogel engineering will be used to construct the model. The tumor microenvironment will be introduced using the controlled formation of cell spheroids. Physical forces will be induced by acoustic waves, and their role in drug mass transport and the metastatic behavior of tumor cells will be studied. Successful development of such a model will represent a paradigm shift in the cancer community by improving patients’ quality of life, potentially prolonging survival, and opening up new clinical trials to test various new drug formulations. The educational objective is to broaden the participation of underrepresented minorities in STEM fields. This will be accomplished through various educational activities by integrating the research into project-based educational activities for undergraduate students and summer internships for underrepresented students. The tumor microenvironment (TME) is highly complex, with a distinct extracellular matrix composition and leaky vasculature that regulate the tumorigenic function of tumor cells. The investigators hypothesize that acoustic-driven, flow-induced pressure, hydrogel bioprinting, and theoretical simulation could be employed to replicate TME-associated pressure gradients and hypoxic conditions for an invasion behavior in tumor cells. A novel way is proposed for regulating biophysical pressure using the acoustic field in cell-laden microtissue models. A tumor-spheroid-laden microfluidic device equipped with interdigital transducers that generate surface acoustic waves will be developed and used to test the hypothesis. Through digital light processing bioprinting, the project aims to create a high-resolution vascular microtissue with spatial gradients of stiffness and pore sizes. Then, a wide range of acoustic fields (in the megahertz regime) will be made to induce pressure fields onto the tumor spheroids and characterize the tumor cells' invasion markers. Finally, a multi-physics theoretical and numerical approach will be developed to help quantify the variation of acoustic radiation forces within a fluid-saturated poroelastic environment and estimate the induced pressure field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在实体瘤中,化学和物理信号导致癌细胞侵入附近的组织和血管系统,众所周知的物理信号是肿瘤区域中的间质流体压力,并且已知现有的肿瘤模型难以调节这种体积压力。具有高间质压力的肿瘤区域通常会抵抗抗癌药物和治疗的输送,该项目的目标是创建和研究间质压力如何在仿生(生物模拟)中调节肿瘤细胞反应。肿瘤模型将使用生物打印技术和水凝胶工程来构建肿瘤微环境,通过声波诱导物理力的形成,以及它们在药物质量运输和转移行为中的作用。研究肿瘤细胞的成功开发将代表癌症界的范式转变,改善患者的生活质量,可能延长生存期,并开展新的临床试验来测试各种新药物制剂。就是要扩大参与范围这将通过各种教育活动,将已完成的研究整合到针对本科生的基于项目的教育活动和针对代表性不足的学生的暑期实习中。肿瘤微环境(TME)非常复杂,具有独特的细胞外基质组成。研究人员认为,声驱动、流动诱导压力、水凝胶生物打印和理论模拟可用于复制 TME 相关的压力梯度和缺氧条件。提出了一种利用充满细胞的微组织模型中的声场调节生物物理压力的新方法,将开发和使用配备有叉指换能器的充满肿瘤球体的微流体装置。为了验证这一假设,该项目旨在通过数字光处理生物打印来创建具有刚度和孔径空间梯度的高分辨率血管微组织,然后产生广泛的声场(兆赫兹级)。最后,将开发一种多物理理论和数值方法来帮助量化流体饱和多孔弹性体中声辐射力的变化。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Underwater double vortex generation using 3D printed acoustic lens and field multiplexing
使用 3D 打印声学透镜和场复用产生水下双涡流
- DOI:10.1063/5.0201781
- 发表时间:2024-03
- 期刊:
- 影响因子:6.1
- 作者:Ellouzi, Chadi;Zabihi, Ali;Aghdasi, Farhood;Kayes, Aidan;Rivera, Milton;Zhong, Jiaxin;Miri, Amir;Shen, Chen
- 通讯作者:Shen, Chen
Experimental demonstration of rainbow trapping of elastic waves in two-dimensional axisymmetric phononic crystal plates
二维轴对称声子晶体板中弹性波彩虹捕获的实验演示
- DOI:10.1121/10.0025179
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Ellouzi, Chadi;Zabihi, Ali;Gormley, Louis;Aghdasi, Farhood;Stojanoska, Katerina;Miri, Amir;Jha, Ratneshwar;Shen, Chen
- 通讯作者:Shen, Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Shen其他文献
A fault detection scheme for PV panels in large scale PV stations with complex installation conditions
安装条件复杂的大型光伏电站光伏板故障检测方案
- DOI:
- 发表时间:
2021-05-19 - 期刊:
- 影响因子:0
- 作者:
Qian Cao;Chen Shen;Mengshuo Jia - 通讯作者:
Mengshuo Jia
Visual-Olfactory Synergistic Perception Based on Dual-Focus Imaging and a Bionic Learning Architecture.
基于双焦点成像和仿生学习架构的视觉嗅觉协同感知。
- DOI:
10.1021/acssensors.2c01721 - 发表时间:
2022-12-27 - 期刊:
- 影响因子:8.9
- 作者:
Yaoxuan Cui;Xubin Zheng;Chen Shen;Libin Qian;Hao Dong;Qingjun Liu;Xing Chen;Qing Yang;Fenni Zhang;Di Wang - 通讯作者:
Di Wang
Sesquiterpenoids from the Leaves of Dalbergia odorifera
降香黄檀叶中的倍半萜类化合物
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Chen Shen;C. Ouyang;Ying Zhang;Qing Zhu;Ronghua Liu;Lanying Chen - 通讯作者:
Lanying Chen
A radiomics-boosted deep-learning for risk assessment of synchronous peritoneal metastasis in colorectal cancer
放射组学增强的深度学习用于结直肠癌同步腹膜转移的风险评估
- DOI:
10.1186/s13244-024-01733-5 - 发表时间:
2024-06-18 - 期刊:
- 影响因子:4.7
- 作者:
Ding Zhang;BingShu Zheng;LiuWei Xu;YiCong Wu;Chen Shen;ShanLei Bao;ZhongHua Tan;Sun - 通讯作者:
Sun
Method for detecting harmonic responsibility misjudgements based on waveform correlation analysis
基于波形相关分析的谐波责任误判检测方法
- DOI:
10.1049/iet-gtd.2018.5644 - 发表时间:
2019-04-23 - 期刊:
- 影响因子:0
- 作者:
Kexuan Tang;Chen Shen - 通讯作者:
Chen Shen
Chen Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen Shen', 18)}}的其他基金
CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
- 批准号:
2337069 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
ERI: Exploiting Dynamic Origami for Reconfigurable and Versatile Control of Acoustic Waves
ERI:利用动态折纸实现声波的可重构和多功能控制
- 批准号:
2137749 - 财政年份:2022
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
相似国自然基金
基于NOS基因功能和催化作用研究模仿葡萄球菌促发酵肉制品色泽形成机制
- 批准号:32302037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AI赋能的6G空地多路协同信道测量分析与建模仿真研究
- 批准号:62371273
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
机器人非设定任务能力习得的模仿强化研究
- 批准号:32200890
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
面向复杂管理系统研究的主体建模仿真方法标准化、模块化与工程化
- 批准号:72271227
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
商家回复的语言模仿对消费者评论行为和产品销量的影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Mimicking Stress-Mediated Invasive Solid Tumor Using Bioprinted Microtissue and Acoustofluidics
合作研究:利用生物打印微组织和声流控技术模拟压力介导的侵袭性实体瘤
- 批准号:
2243506 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Collaborative Research: Enzyme-Mimicking Catalysts for Cellulose Processing
合作研究:用于纤维素加工的模拟酶催化剂
- 批准号:
2246636 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
Collaborative Research: Enzyme-Mimicking Catalysts for Cellulose Processing
合作研究:用于纤维素加工的模拟酶催化剂
- 批准号:
2246635 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Mimicking mussel adhesion with periodically sequenced polypeptides
EAGER:合作研究:用周期性测序的多肽模拟贻贝粘附
- 批准号:
1508717 - 财政年份:2015
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Mimicking mussel adhesion with periodically sequenced polypeptides
EAGER:合作研究:用周期性测序的多肽模拟贻贝粘附
- 批准号:
1506539 - 财政年份:2015
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant