CAS: Prodigious 2- and 3-Dimensional Organic Electron Acceptors via Strategic Cyclizations with Perfluoro Substituents

CAS:通过全氟取代基的策略环化获得巨大的 2 维和 3 维有机电子受体

基本信息

  • 批准号:
    2153922
  • 负责人:
  • 金额:
    $ 49.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Structure, Dynamics, and Mechanisms B (CSDM-B) Program in the Division of Chemistry, Dr. Olga Boltalina of Colorado State University is studying efficient methods for controlled addition of (poly)fluorinated carbacycles to polycyclic aromatic hydrocarbons (PAHs) to expand their conjugated systems, which may result in the critical enhancement of charge transport, thermal stability, resistance to photooxidation, and hence, longer device lifetimes; favorable morphology and electronic properties for photoinduced charge generation in donor-acceptor blends. The project is anticipated to impact material design beyond electronics: liquid crystals, agrochemicals, photonics, chiroptical materials, spintronics, medical imaging with fluorinated compounds (F-MRI, PET) and pharmaceuticals. Other broader societal benefits include the project's contribution to potentially transformational technological advances in high-performing organic acceptors with superior air-, moisture-, light-, and thermal stability that will be integrated into low-cost, efficient, sustainable, and durable devices, including organic field effect transistors, organic light-emitting devices and solar cells that can be building- or vehicle-integrated, thereby visibly increasing the use and lowering costs of renewable energy sources in everyday life. Dr. Boltalina aims to combine cutting-edge research with educational and professional development program for postgraduate students and summer research minority- and other underrepresented-group chemistry majors by involving them in national and international collaborative work and providing them with the skill sets that they need for successful careers from academia to industry.The project will deploy an arsenal of fluorine chemistry methods to design, synthesize and test the charge mobility of new n-type organofluorine semiconductors. Commercially available PAHs and perfluoroalkyl (benzyl) iodides will be used in one-pot reactions to promote the addition of perfluorinated carbacycles and subsequent reductive defluorination leading to aromatic or non-aromatic six-, five- or even seven-membered fluorinated rings on PAHs. Systematic experimental and computational studies of these new transformations are expected to improve fundamental understanding of chemical reaction pathways, to help optimize reaction selectivity and overall efficiency. Charge transport data will be used to determine the specific roles of fluorocarbacycles in the facilitation of charge mobility of highly ordered organofluorine semiconductors. The effects of increased electron affinity and greater solid-state ordering on functional enhancements of these materials as n-type semiconductors, p-dopants, and self-assembled monolayers will be explored. New types of (poly)fluorinated PAH building blocks that had been inaccessible by other methods may well become readily available to the broader synthetic community for the utilization of fluorine chemistry in covalent organic frameworks, biosensing, fluorescent dyes, and electronic materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理 B (CSDM-B) 项目的支持下,科罗拉多州立大学的 Olga Boltalina 博士正在研究将(多)氟化碳环控制添加到多环芳烃中的有效方法(多环芳烃)以扩展其共轭体系,这可能会显着增强电荷传输、热稳定性、抗光氧化性,从而延长器件寿命;供体-受体混合物中光致电荷产生的良好形态和电​​子特性。该项目预计将影响电子以外的材料设计:液晶、农用化学品、光子学、手性光学材料、自旋电子学、氟化化合物医学成像(F-MRI、PET)和药品。其他更广泛的社会效益包括该项目对高性能有机受体的潜在变革性技术进步的贡献,这些受体具有卓越的空气、湿度、光和热稳定性,将集成到低成本、高效、可持续和耐用的设备中,包括有机场效应晶体管、有机发光器件和太阳能电池,可与建筑或车辆集成,从而显着增加日常生活中可再生能源的使用并降低成本。 Boltalina 博士的目标是将前沿研究与研究生和暑期研究少数族裔和其他代表性不足群体化学专业的教育和专业发展计划结合起来,让他们参与国内和国际合作工作,并为他们提供所需的技能。为从学术界到工业界的成功职业生涯提供帮助。该项目将部署一系列氟化学方法来设计、合成和测试新型 n 型有机氟半导体的电荷迁移率。市售的多环芳烃和全氟烷基(苄基)碘化物将用于一锅反应,以促进全氟化碳环的加成和随后的还原脱氟,从而在多环芳烃上形成芳香族或非芳香族的六元、五元甚至七元氟化环。对这些新转化的系统实验和计算研究有望提高对化学反应途径的基本理解,帮助优化反应选择性和整体效率。电荷传输数据将用于确定氟代碳环在促进高度有序的有机氟半导体的电荷迁移率方面的具体作用。将探讨增加的电子亲和力和更大的固态有序性对这些材料(如 n 型半导体、p 掺杂剂和自组装单层)功能增强的影响。通过其他方法无法获得的新型(多)氟化 PAH 结构单元很可能很容易为更广泛的合成界所利用,以在共价有机框架、生物传感、荧光染料和电子材料中利用氟化学。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga Boltalina其他文献

Impact of p-type doping on charge transport in blade-coated small-molecule:polymer blend transistors
  • DOI:
    10.1039/d0tc03094e
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Aniruddha Basu;Muhammad Rizwan Niazi;Alberto D. Scaccabarozzi;Hendrik Faber;Zuping Fei;Dalaver H Anjum;Alexandra F. Paterson;Olga Boltalina;Martin Heeney;Thomas D. Anthopoulos
  • 通讯作者:
    Thomas D. Anthopoulos

Olga Boltalina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了