CAREER: Fundamental Understanding of Thermal Transport at the Single Molecule Level

职业:对单分子水平热传输的基本了解

基本信息

  • 批准号:
    2239004
  • 负责人:
  • 金额:
    $ 54.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

Understanding and control of matter, energy, and information at the nanoscale is one of major hallmarks of modern engineering and sciences. Atomic and single-molecule devices represent the miniaturization limit of any physical machine, and have great potential to create unprecedented functionalities that overcome the performance barriers set by classical physical laws. Directly probing heat transport at the molecular scale will elucidate the fundamental thermal transport mechanisms and dissipation limits in these ultraminiaturized devices, but has remained as a great technological challenge. The principal aim of this project is to fill the knowledge gap in the understanding of thermal transport at the single molecule level. The outcomes of this project can potentially transform the current technologies of energy efficient nanoelectronics and photonics, as well as enable rational bottom-up design methods of high performance thermal and renewable energy materials. This project also focuses on training and diversifying the pool of young generations of nano-engineers and thermal scientists through an integrated education and outreach program that promotes the engagement of K-12 and undergraduate students, particularly those from underrepresented groups, in cutting-edge lab research, workshops, and hands-on learning.The goal of this project is to establish a comprehensive research framework for the fundamental study of heat conduction and energy conversion mechanisms in single molecules. This research will enable systematic tests to address long-standing open questions in molecular thermal transport, which although having a long research history starting from the 1950s, remain at a qualitative level due to the lack of experimental benchmarking data. This project leverages a recently developed scanning thermal microscope with ultrahigh sensitivity that allows the discovery of new thermal effects and promotes creative design of organic molecules from a thermal perspective. Experimental studies will be performed in a series of molecular systems with specific aims to reveal the structure-property relationships in thermal transport of single organic monomers and polymers, and to quantify quantum effects and the figure of merit of thermoelectric molecules. This research is expected to yield deep understanding in molecular phononics and quantum thermoelectrics, and profoundly impact the field of heat management, molecular electronics, and the material design of thermally-enhanced polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在纳米尺度上理解和控制物质、能量和信息是现代工程和科学的主要标志之一。原子和单分子器件代表了任何物理机器的小型化极限,并且具有创造前所未有的功能以克服经典物理定律设置的性能障碍的巨大潜力。直接探测分子尺度的热传输将阐明这些超小型设备的基本热传输机制和耗散极限,但这仍然是一个巨大的技术挑战。该项目的主要目的是填补单分子水平上热传输理解的知识空白。该项目的成果可能会改变当前节能纳米电子学和光子学技术,并实现高性能热能和可再生能源材料的合理的自下而上的设计方法。该项目还侧重于通过综合教育和推广计划来培训年轻一代的纳米工程师和热科学家并使其多样化,该计划促进 K-12 和本科生,特别是来自代表性不足群体的学生参与尖端实验室研究、研讨会和实践学习。该项目的目标是建立一个全面的研究框架,用于单分子热传导和能量转换机制的基础研究。这项研究将使系统测试能够解决分子热传输中长期存在的悬而未决的问题,尽管分子热传输从 20 世纪 50 年代开始就有很长的研究历史,但由于缺乏实验基准数据,仍然停留在定性水平。该项目利用最近开发的超高灵敏度扫描热显微镜,可以发现新的热效应,并从热角度促进有机分子的创造性设计。实验研究将在一系列分子系统中进行,其具体目的是揭示单一有机单体和聚合物热传输中的结构-性能关系,并量化热电分子的量子效应和品质因数。这项研究有望对分子声学和量子热电学产生深入的理解,并对热管理、分子电子学和热增强聚合物材料设计领域产生深远影响。该奖项反映了 NSF 的法定使命,被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Longji Cui其他文献

Guanine-derived core-shell FeCo alloy confined in graphene-like N-doped carbon as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
鸟嘌呤衍生的核壳 FeCo 合金被限制在类石墨烯 N 掺杂碳中,作为可充电锌空气电池的高效双功能氧电催化剂
  • DOI:
    10.1016/j.jallcom.2024.174805
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Xin Lin;Longji Cui;Xueda Ding;Yiquan Chen;Qiaohua Wei;Baobing Huang;Zailai Xie
  • 通讯作者:
    Zailai Xie
Hierarchical boroncarbonitride nanosheets as metal-free catalysts for enhanced oxidative dehydrogenation of propane
多级碳氮化硼纳米片作为无金属催化剂用于增强丙烷氧化脱氢
  • DOI:
    10.1016/j.ces.2024.119848
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Guangming Wang;Aoxue Hu;Qiwei Duan;Longji Cui;Ziyi Chen;Zelong Huang;Xuefei Zhang;Shuping Huang;Zailai Xie
  • 通讯作者:
    Zailai Xie
MicroRNA-582-5p reduces propofol-induced apoptosis in developing neurons by targeting ROCK1.
  • DOI:
    10.2174/1567202617666200207124817
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhongjie Zhang;Yan Xu;Songyuan Chi;Longji Cui
  • 通讯作者:
    Longji Cui
Molecular perspective and engineering of thermal transport and thermoelectricity in polymers
  • DOI:
    10.1039/d3ta08071d
  • 发表时间:
    2024-04
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Sai C. Yelishala;Connor Murphy;Longji Cui
  • 通讯作者:
    Longji Cui

Longji Cui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Longji Cui', 18)}}的其他基金

I-Corps: Thermophotovoltaic system without a vacuum or air gap
I-Corps:无真空或气隙的热光伏系统
  • 批准号:
    2311324
  • 财政年份:
    2023
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Standard Grant

相似国自然基金

变质岩中主要变质矿物化学成分环带性质的基本规律研究及其应用
  • 批准号:
    42330303
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
探索普适的催组装基本原理
  • 批准号:
    22372139
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
经济基本面与期权定价研究:基于经济不确定性的视角
  • 批准号:
    72301227
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于石墨间层质心插入理论的插层化学基本反应机制研究
  • 批准号:
    22379110
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“保基本”目标下“城乡居保”对农村老年人的经济福利效应研究
  • 批准号:
    72364030
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
  • 批准号:
    2338131
  • 财政年份:
    2024
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Fundamental Dynamics of Angular Momentum Carrying Acoustic Wave Propagation
职业:了解角动量携带声波传播的基本动力学
  • 批准号:
    2142555
  • 财政年份:
    2022
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Standard Grant
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
  • 批准号:
    2047851
  • 财政年份:
    2021
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Standard Grant
CAREER: Toward a Fundamental Understanding of Why Thrombus Dissolves, Persists, or Breaks Off
职业生涯:对血栓为何溶解、持续或破裂有一个基本的了解
  • 批准号:
    2046148
  • 财政年份:
    2021
  • 资助金额:
    $ 54.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了