SaTC: CORE: Small: Side-channel Attacks Against Mobile Users: Singularity Detection, Behavior Identification, and Automated Rectification
SaTC:核心:小型:针对移动用户的旁道攻击:奇点检测、行为识别和自动纠正
基本信息
- 批准号:1815636
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Side-channel attacks have been proven effective to infer sensitive information (such as user activities) that should not be disclosed to unauthorized users. Owing to the closed nature of the cellular network infrastructure, adversaries cannot easily capture encrypted mobile network traffic, thus protecting against side-channel information leakage of mobile users. However, with the recent proliferation of software defined radio platforms and emerging Internet Protocol-based cellular network services over public networks (including Wi-Fi calling), mobile phone users are now exposed to more serious side-channel information leakage than before. This project aims to conduct a comprehensive investigation of side-channel attacks against mobile phone users by collecting, labeling, mining, and analyzing mobile users' encrypted mobile data. The success of this research will not only contribute new techniques to discover security vulnerabilities that can be exploited from side-channel information leakage, but also develop novel automated rectification mechanisms to safeguard users. The proposed activities may contribute to the upcoming 5G technology standardization and train a new generation of engineers and students. This project makes three technical contributions: (1) New techniques for mobile data collection and labeling: Cellular network control-plane signals indicate a variety of cellular network events (such as changes in a user's Quality-of-Service profile or location) which may be exploited to invade user privacy. However, the current-generation cellular sniffers cannot distinguish well between control-plane signals and data-plane data packets when they are transmitted over the same physical channel. This project will develop new techniques to collect encrypted mobile network traffic including control-plane signals and data-plane data packets and label them with user behaviors and network events; (2) Advanced Singularity Detection and Behavior Identification mechanism: This project will study and develop end-to-end frameworks that can perform singularity detection and behavior identification simultaneously. This involves processing limited labeled data and mining frequent patterns for emerging behaviors; (3) Mobile/cellular-friendly automated rectification mechanisms: The state-of-the-art security defenses for side-channel attacks are not designed for mobile networked systems. For example, mobile users pay a performance penalty for the noise added to their data packets. This project will develop mobile-friendly (meaning low memory usage) and cellular-friendly (meaning compatible with standards and operators' charging model) automated rectification mechanisms to secure a variety of mobile devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
侧通道攻击已被证明有效地推断不应向未经授权的用户披露的敏感信息(例如用户活动)。由于蜂窝网络基础架构的封闭性质,对手无法轻易捕获加密的移动网络流量,从而防止移动用户的侧通道信息泄漏。但是,随着软件定义的无线电平台和新兴的Internet协议通过公共网络(包括Wi-Fi呼叫)的扩散,移动电话用户现在会暴露于比以前更严重的侧通道信息泄漏。该项目旨在通过收集,标签,采矿和分析移动用户的加密移动数据来对对移动电话用户的侧渠道攻击进行全面调查。这项研究的成功不仅会为发现可以从侧通道信息泄漏中利用的安全漏洞提供新技术,而且还开发了新型的自动化纠正机制来保护用户。拟议的活动可能有助于即将到来的5G技术标准化,并培训新一代的工程师和学生。该项目做出了三个技术贡献:(1)移动数据收集和标签的新技术:蜂窝网络控制平面信号指示各种蜂窝网络事件(例如用户服务质量配置文件或位置的变化)被利用以入侵用户隐私。但是,电流生成的蜂窝嗅探器在通过同一物理通道传输时无法区分控制平面信号和数据平面数据包。该项目将开发新技术,以收集加密的移动网络流量,包括控制平面信号和数据平面数据包,并用用户行为和网络事件标记它们; (2)高级奇异性检测和行为识别机制:该项目将研究和开发可以同时执行奇异性检测和行为识别的端到端框架。这涉及处理有限的标记数据和新兴行为的频繁模式; (3)移动/蜂窝友好的自动化整流机制:侧通道攻击的最新安全防御措施不是为移动网络系统设计的。例如,移动用户为添加到其数据包中的噪声支付绩效罚款。该项目将开发对移动友好型(意味着低内存使用率)和蜂窝友好型(意味着与标准和运营商的充电模型兼容)自动纠正机制,以确保各种移动设备。此奖项反映了NSF的法定任务,并且被认为是值得的。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring the Insecurity of Google Account Registration Protocol via Model Checking
通过模型检查探索Google帐户注册协议的不安全性
- DOI:10.1109/ssci44817.2019.9003113
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Xie, Tian;Wang, Sihan;Tu, Guan-Hua;Li, Chi-Yu;Lei, Xinyu
- 通讯作者:Lei, Xinyu
Dissecting Operational Cellular IoT Service Security: Attacks and Defenses
- DOI:10.1109/tnet.2023.3313557
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Sihan Wang;Tian Xie;Min-Yue Chen;Guan-Hua Tu;Chi-Yu Li;Xinyu Lei;Polun Chou;Fu-Cheng Hsieh;Yiwen Hu;Li Xiao;Chunyi Peng
- 通讯作者:Sihan Wang;Tian Xie;Min-Yue Chen;Guan-Hua Tu;Chi-Yu Li;Xinyu Lei;Polun Chou;Fu-Cheng Hsieh;Yiwen Hu;Li Xiao;Chunyi Peng
The Untold Secrets of WiFi-Calling Services: Vulnerabilities, Attacks, and Countermeasures
- DOI:10.1109/tmc.2020.2995509
- 发表时间:2021-11
- 期刊:
- 影响因子:7.9
- 作者:Tian Xie;Guan-Hua Tu;Bangjie Yin;Chi-Yu Li;Chunyi Peng;Mi Zhang;Hui Liu;Xiaoming Liu
- 通讯作者:Tian Xie;Guan-Hua Tu;Bangjie Yin;Chi-Yu Li;Chunyi Peng;Mi Zhang;Hui Liu;Xiaoming Liu
MPKIX: Towards More Accountable and Secure Internet Application Services via Mobile Networked Systems
- DOI:10.1109/tmc.2022.3141694
- 发表时间:2023-06
- 期刊:
- 影响因子:7.9
- 作者:Tian Xie;Sihan Wang;Xinyu Lei;Jingwen Shi;Guan-Hua Tu;Chi-Yu Li
- 通讯作者:Tian Xie;Sihan Wang;Xinyu Lei;Jingwen Shi;Guan-Hua Tu;Chi-Yu Li
Security Threats from Bitcoin Wallet Smartphone Applications: Vulnerabilities, Attacks, and Countermeasures
比特币钱包智能手机应用程序的安全威胁:漏洞、攻击和对策
- DOI:10.1145/3422337.3447832
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hu, Yiwen;Wang, Sihan;Tu, Guan-Hua;Xiao, Li;Xie, Tian;Lei, Xinyu;Li, Chi-Yu
- 通讯作者:Li, Chi-Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUAN-HUA TU其他文献
GUAN-HUA TU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUAN-HUA TU', 18)}}的其他基金
NeTS: Small: Exploring the Non-Standardized Polices, Operations, and Requirements for 5G Cellular Networks and Beyond: Advancing the Modeling, Tools, and Evaluation
NeTS:小型:探索 5G 蜂窝网络及其他网络的非标准化策略、运营和要求:推进建模、工具和评估
- 批准号:
2321416 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Safeguarding Next-Generation Emergency Services (NG-9-1-1) over Cellular Networks: From Design to Practice
协作研究:SaTC:核心:中:通过蜂窝网络保障下一代紧急服务 (NG-9-1-1):从设计到实践
- 批准号:
2246050 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: Exploring the Design, Implementation, Operation Issues of Cellular IoT via Formal Analysis and Empirical Validation
NeTS:小型:通过形式分析和实证验证探索蜂窝物联网的设计、实施和操作问题
- 批准号:
1814551 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
核受体RORgamma调控肿瘤微生态促进非小细胞肺癌恶性进展的作用机制研究
- 批准号:82373186
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant