Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning

合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器

基本信息

  • 批准号:
    2234919
  • 负责人:
  • 金额:
    $ 21.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

High-rate systems are defined as dynamic systems experiencing high-rate and high-amplitude events. Examples include hypersonic vehicles and active impact mitigation strategies. The advanced operation of these mechanisms can only be achieved through control and feedback systems capable of operating in the sub-millisecond range, thus necessitating tight performance constraints. Additionally, high-rate systems are highly nonlinear and nonstationary, for which traditional real-time inference methods are incapable of providing credible predictions. Topological data analysis is gaining popularity for classifying complex time series. Its integration with architected machine learning algorithms shows promise in advancing the predictive capabilities for high-rate systems. However, topological data analysis is computationally expensive and cannot be applied in the sub-millisecond range. This project will investigate real-time topological data analysis capabilities by developing and integrating advances in mathematical, software, and hardware foundations. Successful completion of this project will yield theoretical foundations enabling the integration of topological data analysis with machine learning for modeling and forecasting time series, constituting a major leap from the pure algebraic topological approach. It is envisioned that the developed foundations, along with software and hardware artifacts, will find applications in supercomputing, high-speed data storage, connected vehicles, financial fraud mitigation, cyber-security, deep-fake detection, active blast shielding, and hypersonic vehicles. This project will broaden participation in computing by training multiple undergraduate and graduate students through a well-structured research and education plan that leverages existing programs and partnerships at the three partnering universities, including an undergraduate historically black college.This project will demonstrate that complex nonstationary systems can be learned in real-time by integrating modern mathematical tools combined with advances in hardware, notably by generating a field-programmable gate array design for a real-time predictor running on the edge. To that end, customized variations of traditional topological data analysis will be developed to meet the needs of the targeted modeling and forecasting tasks while producing computationally efficient machine learning representations. Concurrently, opportunities and limitations in conducting topological data analysis in real-time and in producing a modular automated programmer for heterogeneous hardware will be identified. Then, software and hardware discoveries will be integrated to demonstrate real-time topological data analysis and to conduct time series modeling and forecasting. Undergraduate students involved in these research projects will be provided with long-term mentored research and learning experiences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高速率系统被定义为经历高速率和高幅度事件的动态系统。例子包括高超音速飞行器和主动影响缓解策略。这些机制的高级操作只能通过能够在亚毫秒范围内运行的控制和反馈系统来实现,因此需要严格的性能限制。此外,高速系统具有高度非线性和非平稳性,传统的实时推理方法无法提供可靠的预测。拓扑数据分析在对复杂时间序列进行分类方面越来越受欢迎。它与结构化机器学习算法的集成显示出在提高高速系统的预测能力方面的前景。然而,拓扑数据分析的计算成本很高,并且不能在亚毫秒范围内应用。该项目将通过开发和集成数学、软件和硬件基础的进步来研究实时拓扑数据分析能力。该项目的成功完成将为将拓扑数据分析与机器学习相结合以建模和预测时间序列奠定理论基础,这是纯代数拓扑方法的重大飞跃。预计所开发的基础以及软件和硬件工件将在超级计算、高速数据存储、联网车辆、金融欺诈缓解、网络安全、深度伪造检测、主动爆炸屏蔽和高超音速飞行器等领域得到应用。该项目将通过一个结构良好的研究和教育计划来培训多名本科生和研究生,从而扩大对计算的参与,该计划利用三所合作大学的现有项目和合作伙伴关系,其中包括一所本科生历史悠久的黑人学院。该项目将证明复杂的非平稳系统可以通过将现代数学工具与硬件进步相结合来实时学习,特别是通过为在边缘运行的实时预测器生成现场可编程门阵列设计。为此,将开发传统拓扑数据分析的定制变体,以满足目标建模和预测任务的需求,同时产生计算高效的机器学习表示。同时,将确定实时进行拓扑数据分析和为异构硬件生成模块化自动化编程器的机会和限制。然后,将集成软件和硬件发现来演示实时拓扑数据分析并进行时间序列建模和预测。参与这些研究项目的本科生将获得长期指导的研究和学习经验。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Laflamme其他文献

Damage detection on mesosurfaces using distributed sensor network and spectral diffusion maps
使用分布式传感器网络和光谱扩散图进行介观表面损伤检测
  • DOI:
    10.1088/0957-0233/27/4/045110
  • 发表时间:
    2016-03-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Chinde;Liang Cao;Umesh Vaidya;Simon Laflamme
  • 通讯作者:
    Simon Laflamme
E-learning systems versus instructional communication tools: Developing and testing a new e-learning user interface from the perspectives of teachers and students
电子学习系统与教​​学交流工具:从教师和学生的角度开发和测试新的电子学习用户界面
  • DOI:
    10.1016/j.techsoc.2019.101192
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    W. Farhan;Jamil Razmak;Serge Demers;Simon Laflamme
  • 通讯作者:
    Simon Laflamme
Design and Standardization of a Speech and Language Screening Tool for Use among School-Aged Bilingual Children in a Minority Language Setting
供少数民族语言环境中学龄双语儿童使用的言语和语言筛查工具的设计和标准化
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michèle Minor;Chantal Mayer;Roxanne Bélanger;M. Robillard;Simon Laflamme;A. Reguigui
  • 通讯作者:
    A. Reguigui
3D printed self-sensing cementitious composites using graphite and carbon microfibers
使用石墨和碳微纤维的 3D 打印自感知水泥基复合材料
  • DOI:
    10.1088/1361-6501/ad41f9
  • 发表时间:
    2024-04-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Liu;Simon Laflamme;A. D’Aless;ro;ro;Filippo Ubertini
  • 通讯作者:
    Filippo Ubertini
Predictors of Family Physician Use Among Older Residents of Ontario and An Analysis of the Andersen-Newman Behavior Model
安大略省老年居民家庭医生使用的预测因素以及安徒生-纽曼行为模型的分析

Simon Laflamme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Laflamme', 18)}}的其他基金

RTML: Small: Collaborative: A Programming Model and Platform Architecture for Real-time Machine Learning for Sub-second Systems
RTML:小型:协作:亚秒级系统实时机器学习的编程模型和平台架构
  • 批准号:
    1937460
  • 财政年份:
    2019
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
PFI-TT: Physics-based Deep Transfer Learning for Predictive Maintenance of Industrial and Agricultural Machinery
PFI-TT:基于物理的深度迁移学习,用于工业和农业机械的预测性维护
  • 批准号:
    1919265
  • 财政年份:
    2019
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Multifunctional Structural Panel for Energy Efficiency and Multi-Hazards Mitigation
合作研究:用于提高能源效率和减轻多种危害的多功能结构面板
  • 批准号:
    1562992
  • 财政年份:
    2016
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Development of High Performance Control Systems for Wind Response Mitigation
开发用于减轻风响应的高性能控制系统
  • 批准号:
    1537626
  • 财政年份:
    2015
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Semi-Active Controlled Cladding Panels for Multi-Hazard Resilient Buildings
合作研究:用于多灾害防御建筑的半主动控制覆层板
  • 批准号:
    1463252
  • 财政年份:
    2015
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Developing the Next Generation of Cost-Effective High Performance Damping Systems for Seismic and Wind Hazards Mitigation
开发下一代经济高效的高性能阻尼系统以减轻地震和风灾
  • 批准号:
    1300960
  • 财政年份:
    2013
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
  • 批准号:
    62265011
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了