CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
基本信息
- 批准号:2317251
- 负责人:
- 金额:$ 55.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rise of international financial and cybercrime, such as fraud and money laundering, has led to billions of dollars in losses annually in the United States. To address this urgent issue, there is a need for real-time fraud detection algorithms and systems with extremely low latency. Graph-based machine learning algorithms, specifically Graph Neural Networks (GNNs), have emerged as a promising solution. Financial activity graphs possess two crucial characteristics: they are extremely large, comprising vast amounts of transactions, financial institutions, and customers, and they evolve dynamically over time as new transactions occur. These characteristics present significant challenges for real-time, low-latency fraud detection, as it requires a scalable and parallelizable distributed system. Additionally, the dynamic nature of the graphs poses challenges for system control and optimization, as the partitioning of the problem on a distributed system may quickly become suboptimal due to graph updates. To tackle these challenges, this project proposes a distributed FPGA (Field-Programmable Gate Array) system for real-time fraud detection on large-scale dynamic graphs. The project aims to achieve microsecond-level latency, which has not been explored in real-time distributed dynamic GNNs. The research involves three main tasks: system construction, dynamic optimization, and uncertainty analysis and optimization. The impacts of this project are significant. Successful implementation will enhance the effectiveness of fraudulent transaction alerts for millions of people globally and help businesses reduce fraud losses and increase revenue. The project's outcomes can have applications in various domains, such as cybercrime detection, insurance fraud, national security infrastructure protection, and identifying anomalies and terrorist attacks. The constructed system will be made publicly accessible, and all codes will be open-sourced to benefit the community. Furthermore, the project presents an opportunity to involve students, including those from underrepresented groups, in research and education through collaborations and engaging competitions.The project aims to address the rising challenges of international financial and cybercrime by developing a distributed FPGA system for real-time fraud detection on large-scale dynamic graphs. Current fraud detection systems lack low-latency capabilities, making real-time detection difficult. To overcome this, the project proposes the use of Graph Neural Networks (GNNs) and introduces three key tasks: system construction, dynamic optimization, and uncertainty analysis and optimization. The financial graphs involved in fraud detection are characterized by their immense size and dynamic nature. These attributes pose significant obstacles to real-time detection and system optimization. To tackle these challenges, we plan to utilize a distributed FPGA system that can handle large-scale dynamic graphs efficiently. By leveraging Smart Network Interface Cards (SmartNICs) and multi-agent reinforcement learning (MARL), the system will dynamically repartition evolving graphs across FPGAs for optimal performance. Additionally, we propose to use Bayesian Neural Networks (BNNs) to model and analyze system predictability and uncertainty. This information is crucial for real-time systems. The BNN will guide active learning strategies, allowing the system to make informed decisions when faced with high uncertainty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
国际金融和网络犯罪(例如欺诈和洗钱)的兴起导致美国每年造成数十亿美元的损失。为了解决这个紧急问题,需要具有极低延迟的实时欺诈检测算法和系统。基于图形的机器学习算法,特别是图形神经网络(GNN),已成为有前途的解决方案。财务活动图具有两个关键特征:它们非常大,包括大量交易,金融机构和客户,随着新交易的发生,它们会随着时间的流逝而动态发展。这些特征对实时,低延迟欺诈检测提出了重大挑战,因为它需要可扩展且可行的分布式系统。此外,图形的动态性质对系统控制和优化构成了挑战,因为由于图形更新,分布式系统上问题的分配可能会迅速降低。为了应对这些挑战,该项目提出了一个分布式FPGA(现场编程的门阵列)系统,用于在大规模动态图上进行实时欺诈检测。该项目旨在达到微秒级别的延迟,尚未在实时分布式动态GNN中探索。该研究涉及三个主要任务:系统构建,动态优化以及不确定性分析和优化。该项目的影响很大。成功的实施将提高全球数百万人的欺诈交易警报的有效性,并帮助企业减少欺诈损失并增加收入。该项目的结果可以在各个领域中提供应用程序,例如网络犯罪检测,保险欺诈,国家安全基础设施保护,并确定异常和恐怖袭击。构造的系统将被公开访问,所有代码都将被开源以使社区受益。此外,该项目为学生提供了一个机会,包括通过合作和参与竞争的学生参与研究和教育的学生。该项目旨在通过开发分布式的FPGA系统来解决在大型动态图上实时欺诈检测的分布式FPGA系统的不断增加的挑战。当前的欺诈检测系统缺乏低延迟功能,因此难以实时检测。为了克服这一点,该项目提出了图形神经网络(GNN)的使用,并介绍了三个关键任务:系统构建,动态优化以及不确定性分析和优化。欺诈检测所涉及的财务图的特征是它们的巨大规模和动态性质。这些属性对实时检测和系统优化构成了重大障碍。为了应对这些挑战,我们计划利用可以有效处理大规模动态图的分布式FPGA系统。通过利用智能网络接口卡(智能网络)和多代理增强学习(MARL),该系统将动态重新分配跨FPGA的图形,以获得最佳性能。此外,我们建议使用贝叶斯神经网络(BNN)来建模和分析系统的可预测性和不确定性。此信息对于实时系统至关重要。 BNN将指导积极的学习策略,使系统在面对高度不确定性时可以做出明智的决策。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估审查标准来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Hao其他文献
Interconnection Allocation Between Functional Units and Registers in High-Level Synthesis
高级综合中功能单元和寄存器之间的互连分配
- DOI:
10.1109/tvlsi.2016.2607758 - 发表时间:
2017 - 期刊:
- 影响因子:2.8
- 作者:
Cong Hao;Jianmo Ni;Nan Wang;and Takeshi Yoshimura - 通讯作者:
and Takeshi Yoshimura
3D-IC signal TSV assignment for thermal and wirelength optimization
用于热和线长优化的 3D-IC 信号 TSV 分配
- DOI:
10.1109/patmos.2017.8106948 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yuxin Qian;Cong Hao;T. Yoshimura - 通讯作者:
T. Yoshimura
TSV Assignment of Thermal and Wirelength Optimization for 3D-IC Routing
3D-IC 布线的热和线长优化的 TSV 分配
- DOI:
10.1109/patmos.2018.8464161 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yi Zhao;Cong Hao;T. Yoshimura - 通讯作者:
T. Yoshimura
An Efficient Algorithm for 3D-IC TSV Assignment
3D-IC TSV 分配的高效算法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Cong Hao;Nan Ding;Takeshi Yoshimura - 通讯作者:
Takeshi Yoshimura
Thermal-Aware Floorplanning for NoC-Sprinting
NoC-Sprinting 的热感知布局规划
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Hui Zhu;Cong Hao;Takeshi Yoshimura - 通讯作者:
Takeshi Yoshimura
Cong Hao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Hao', 18)}}的其他基金
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
- 批准号:
2338365 - 财政年份:2024
- 资助金额:
$ 55.47万 - 项目类别:
Continuing Grant
Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
具有通用性和可解释性的机器学习辅助建模和近似计算设计
- 批准号:
2202329 - 财政年份:2022
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
相似国自然基金
小细胞肺癌脑、肾上腺等多器官转移的谱系可塑性机制与干预研究
- 批准号:82330087
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
融合多源异构数据的小微企业经营风险智能识别与应对策略研究
- 批准号:72301188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多臂小分子受体的设计合成以及在三元有机光伏电池中的应用
- 批准号:52373176
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
自取向小分子介导水凝胶多尺度各向异性结构的主动调控及其作用机制
- 批准号:22375028
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于NLRP3/Casepase-1/GSDMD小胶质细胞焦亡通路研究多奈哌齐干预桥本甲状腺炎致情绪障碍的作用机制
- 批准号:82300876
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CSR: Small: Toward a Scalable, Multi-Tenant, Edge-Cloud Infrastructure for Real-Time Computation
CSR:小:迈向可扩展、多租户、边缘云实时计算基础设施
- 批准号:
1815690 - 财政年份:2018
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Multi-tier Service Architecture in IoT-Edge-Cloud-Paradigms
CSR:小型:协作研究:物联网-边缘-云-范式中的多层服务架构
- 批准号:
1812797 - 财政年份:2018
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Multi-tier Service Architecture in IoT-Edge-Cloud-Paradigms
CSR:小型:协作研究:物联网-边缘-云-范式中的多层服务架构
- 批准号:
1903136 - 财政年份:2018
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
CSR: Small: A Multi-Layered Deniable Steganographic File System
CSR:小型:多层可否认的隐写文件系统
- 批准号:
1814347 - 财政年份:2018
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant
CSR: Small: Delegation Systems for Efficient and Safe Multi-Core Programming
CSR:小型:用于高效、安全多核编程的委派系统
- 批准号:
1816714 - 财政年份:2018
- 资助金额:
$ 55.47万 - 项目类别:
Standard Grant