CIF: Small: Resource Theories of Quantum Channels
CIF:小:量子通道的资源理论
基本信息
- 批准号:2315398
- 负责人:
- 金额:$ 42.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum information science is based on the science of 'entanglement', where the quantum states of two or more objects have to be described with reference to each other, even though the individual objects are spatially separated. Despite being identified nearly a century ago, much is not understood regarding the relationship between the resources in a quantum system and the level of entanglement that can be achieved. This project seeks to answer some fundamental questions in the resource theory of entanglement for quantum channels. How much entanglement is required to prepare a quantum state or to simulate a quantum channel? How much entanglement can one distill from these same resources? How many "magic quantum states" are required to perform a given quantum computation? How much "non-Gaussianity" is required to achieve a quantum advantage in communication over quantum channels? How distinguishable are two quantum states or channels? The questions that this project addresses are of particular interest for the many applications of quantum information processing, such as solving computationally hard problems and enabling secure and covert communications. The project will also train an inter-disciplinary cadre of students in this domain through extensive education and curriculum development activities. This project will address foundational questions concerning resource theories of quantum channels. The traditional perspective in quantum resource theories concerns how to use free operations to convert one resourceful quantum state to another one. For example, a fundamental and well known question in entanglement theory is to determine the distillable entanglement of a bipartite state, which is equal to the maximum rate at which fresh Bell states can be distilled from many copies of a given bipartite state by employing local operations and classical communication for free. It is the aim of this research project to take this kind of question to the next level, with the main question being: What is the best way of using free channels to convert one resourceful quantum channel to another? The project seeks to identify measures of entanglement for quantum channels that allow for addressing the above questions while being efficiently computable, and also to understand dynamical processes in other resource theories, such as magic states and channels, distinguishability, purity, thermodynamics, non-Gaussianity, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学基于“纠缠”的科学,即即使各个对象在空间上分开,也必须相互描述两个或多个对象的量子状态。尽管大约一个世纪前被确定,但对于量子系统中的资源与可以实现的纠缠水平之间的关系并不了解很多。该项目试图回答量子渠道纠缠资源理论中的一些基本问题。准备量子状态或模拟量子通道需要多少纠缠?一个人可以从这些相同的资源中提取多少纠缠?执行给定的量子计算需要多少个“魔术量子状态”?在与量子通道相比,在通信中获得量子优势需要多少“非高斯”?两个量子状态或渠道有多区分?对于量子信息处理的许多应用,例如解决计算上的严重问题并实现安全和秘密的通信,该项目提出的问题特别感兴趣。该项目还将通过广泛的教育和课程发展活动培训该领域的学生跨学科干部。该项目将解决有关量子渠道资源理论的基本问题。量子资源理论中的传统观点涉及如何使用自由操作将一个足智多谋的量子状态转换为另一种量子状态。例如,纠缠理论中的一个基本且众所周知的问题是确定双方状态的可蒸馏纠缠,该纠缠与通过使用本地运营和自由经典交流的特定双方状态的许多副本可以将新鲜钟状状态蒸馏出来的最大速率。该研究项目的目的是将这种问题提高到一个新的水平,主要问题是:使用免费渠道将一个足智多谋的量子渠道转换为另一个频道的最佳方法是什么?该项目旨在确定量子渠道的纠缠措施,允许在有效地计算的同时解决上述问题,并了解其他资源理论中的动态过程,例如魔术状态和渠道,可区分性,纯度,热力学,非高卢人,非高斯等等。这些奖项通过NSF的法定宣称和宽广的影响,及其在宽广的范围内得到了反映,并在宽广的范围内得到了构成的构成,并构成了构成的构成,并构成了拟议中的拟议。 标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum mixed state compiling
- DOI:10.1088/2058-9565/acc4e3
- 发表时间:2022-09
- 期刊:
- 影响因子:6.7
- 作者:Nic Ezzell;E. Ball;Aliza U. Siddiqui;M. Wilde;A. Sornborger;Patrick J. Coles;Zoe Holmes
- 通讯作者:Nic Ezzell;E. Ball;Aliza U. Siddiqui;M. Wilde;A. Sornborger;Patrick J. Coles;Zoe Holmes
Overcoming entropic limitations on asymptotic state transformations through probabilistic protocols
- DOI:10.1103/physreva.107.042401
- 发表时间:2022-09
- 期刊:
- 影响因子:2.9
- 作者:Bartosz Regula;Ludovico Lami;M. Wilde
- 通讯作者:Bartosz Regula;Ludovico Lami;M. Wilde
Quantum Algorithms for Testing Hamiltonian Symmetry
用于测试哈密顿对称性的量子算法
- DOI:10.1103/physrevlett.129.160503
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:LaBorde, Margarite L.;Wilde, Mark M.
- 通讯作者:Wilde, Mark M.
Quantifying the performance of approximate teleportation and quantum error correction via symmetric 2-PPT-extendible channels
通过对称 2-PPT 可扩展通道量化近似隐形传态和量子纠错的性能
- DOI:10.1103/physreva.107.012428
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Holdsworth, Tharon;Singh, Vishal;Wilde, Mark M.
- 通讯作者:Wilde, Mark M.
Cycle index polynomials and generalized quantum separability tests
- DOI:10.1098/rspa.2022.0733
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Zachary P. Bradshaw;Margarite L. LaBorde;M. Wilde
- 通讯作者:Zachary P. Bradshaw;Margarite L. LaBorde;M. Wilde
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Wilde其他文献
Mark Wilde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Wilde', 18)}}的其他基金
FET: Small: Frontiers of Quantum Shannon Theory
FET:小型:量子香农理论的前沿
- 批准号:
2329662 - 财政年份:2023
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant
Quantifying and Optimizing the Performance of Continuous-Variable Quantum Logic Operations
量化和优化连续可变量子逻辑运算的性能
- 批准号:
2304816 - 财政年份:2022
- 资助金额:
$ 42.66万 - 项目类别:
Continuing Grant
Quantifying and Optimizing the Performance of Continuous-Variable Quantum Logic Operations
量化和优化连续可变量子逻辑运算的性能
- 批准号:
2014010 - 财政年份:2020
- 资助金额:
$ 42.66万 - 项目类别:
Continuing Grant
CIF: Small: Resource Theories of Quantum Channels
CIF:小:量子通道的资源理论
- 批准号:
1907615 - 财政年份:2019
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant
CIF: Small: CQIS: Recoverability and Markovianity in Quantum Information
CIF:小:CQIS:量子信息中的可恢复性和马尔可夫性
- 批准号:
1714215 - 财政年份:2017
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant
CAREER: Theoretical and practical aspects of quantum communication protocols
职业:量子通信协议的理论和实践方面
- 批准号:
1350397 - 财政年份:2014
- 资助金额:
$ 42.66万 - 项目类别:
Continuing Grant
相似国自然基金
面向海量小容量分布式资源节点的虚拟电厂调控优化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向海量小容量分布式资源节点的虚拟电厂调控优化研究
- 批准号:62103325
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
资源植物四倍体物种小大黄的进化历史研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
D2D使能的毫米波小蜂窝子信道分配机制研究
- 批准号:61801016
- 批准年份:2018
- 资助金额:25.5 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Risk-Aware Resource Allocation for Robust Wireless Autonomy
CIF:小型:具有风险意识的资源分配,实现强大的无线自治
- 批准号:
2242215 - 财政年份:2023
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
- 批准号:
2007911 - 财政年份:2020
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant
CIF: Small: Resource Theories of Quantum Channels
CIF:小:量子通道的资源理论
- 批准号:
1907615 - 财政年份:2019
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant
CIF:Small:Network Tomography and Resource Allocation
CIF:小:网络断层扫描和资源分配
- 批准号:
1717033 - 财政年份:2017
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
- 批准号:
1801846 - 财政年份:2017
- 资助金额:
$ 42.66万 - 项目类别:
Standard Grant