ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
基本信息
- 批准号:2313755
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a joint effort between a U.S. University (Buffalo) and two U.K. Universities (Cambridge and Oxford).Effectively detecting low dose rates of radiation is critical for improving the safety and capability of non-invasive diagnostics, including medical imaging, nuclear security, and product inspection. However, current industry-standard materials (namely amorphous selenium and cadmium zinc telluride) have limited ability to detect X-rays, such that the current medical standard X-ray dose rate is a very high value, and this increases the risk of causing cancer. To improve the safety of medical imaging, as well as to improve the effectiveness of a wide range of other diagnostics involving ionizing radiation, it is essential to engineer new materials capable of detecting lower dose rates of radiation, with stable performance under operation. The collaborative project between the US team (University at Buffalo) and the UK team (University of Oxford and University of Cambridge) is to develop a new generation of cost-effective bismuth-based radiation detectors capable of detecting three orders of magnitude lower dose rates than the current commercial standard. The project will directly address the critical challenge of engineering the materials and the manufacturability for high-performing, operationally stable radiation detectors. The broader technological impacts of this project are built on collaborations with industry and a US national laboratory. Furthermore, the research program is well integrated with education and outreach programs at all three universities, including: 1) training the future workforce with multidisciplinary research skills in an international research environment; 2) implementing cutting-edge research in novel materials and devices in materials science and engineering curricula through teaching; 3) disseminating research findings to broader audiences through outreach programs; and 4) increasing diversity and broad participation of under-represented minority groups from local communities, contributing to strengthening and expanding the future STEM workforce in both US and UK and enhancing society awareness of development of state-of-the-art radiation detection technology.Significantly improved performance of radiation detectors has recently been achieved with lead-halide perovskite single crystals. However, the high lead (Pb) content exceeds the maximum limit set in many jurisdictions (including in the US and UK), and the facile ionic conductivity in these materials limits the range of electric fields that can be applied, thus limiting their operational stability. This proposal will address the challenges of current X-ray detectors, including the use of toxic elements, limited performance, high manufacturing costs, and limited charge-carrier transport. Our preliminary results have shown that BiOI can be the ideal non-toxic alternative to the Pb-based perovskites for next generation radiation detectors with ultrahigh detectivity because of its heavy elements, large mobility-lifetime products, and high resistivities. To transfer this technology to industry and to have an impact on medical imaging and nuclear security, we will further 1) improve the mobility-lifetime product to well above 6±2 x 10-2 cm2 V-1 s-1 through compositional engineering, 2) increase the size of the detectors by an order of magnitude (from 5 mm currently) without compromising on performance, and 3) optimize the device architecture and imaging performance. The overall aim of this joint research between US team (University at Buffalo) and the UK team (University of Oxford and University of Cambridge) is to develop a new generation of cost-effective, stable and up-scaled bismuth-based radiation detectors capable of detecting three orders of magnitude lower dose rates than the current commercial standard.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是美国大学(布法罗)和两所英国大学(剑桥和牛津大学)之间的共同努力。有效地检测低剂量的辐射率对于提高非侵入性诊断的安全性和能力至关重要,包括医学成像,核安全性,核安全性和产品检查。然而,当前的行业标准材料(即无定形硒和锌醇酸酯)检测X射线的能力有限,因此当前的医疗标准X射线剂量率是很高的价值,这会增加引起癌症的风险。为了提高医疗成像的安全性,并提高了涉及电离辐射的广泛诊断的有效性,对于能够检测较低剂量辐射率的新材料,至关重要的是,并且在操作中稳定的性能。美国团队(布法罗大学)和英国团队(牛津大学和剑桥大学)之间的合作项目是开发新一代的基于具有成本效益的基于卑鄙的放射线探测器,能够检测到比当前商业标准低三个数量量的剂量率。该项目将直接解决工程材料和制造业的关键挑战,以实现高性能,操作稳定的辐射探测器。该项目的更广泛的技术影响建立在与行业和美国国家实验室的合作上。此外,该研究计划与三所大学的教育和外展计划充分融合,包括:1)在国际研究环境中培训未来的劳动力; 2)通过教学实施材料科学和工程课程中新型材料和设备的尖端研究; 3)通过外展计划向更广泛的受众传播研究结果; 4)增加了从当地社区中代表不足的少数群体的多样性和广泛参与,从而有助于加强和扩大英国的未来STEM劳动力,并增强社会对先进的放射探测技术发展的认识。最近,使用六盐钙钛矿单晶实现了辐射探测器的性能。但是,高铅(PB)含量超过了许多司法管辖区(包括在美国和英国)中设置的最大限制,并且在这些材料中易于的离子电导率限制了可以应用的电场范围,从而限制了其操作稳定性。该提案将解决当前X射线探测器的挑战,包括使用有毒元素,有限的性能,高生产成本和有限的电荷运输运输。我们的初步结果表明,Bioi可以是基于PB的钙钛矿的理想无毒替代品,用于下一代辐射探测器,具有超高检测,因为其较重的元素,大型移动性持久性产物和高耐药性。要将这项技术转移到行业并对医学成像和核安全产生影响,我们将进一步提高千篇一律的产品,将其提高到超过6±2 x 10-2 x 10-2 x 10-2 cm2 cm2 v-1 S-1,通过复合工程,2)增加探测器的大小,从目前的5 mm(从5 mm)提高探测器的大小(从目前的5 mm)上,而无需妥协且3)最佳设备架构架构架构架构架构架构。这项美国团队(布法罗大学)和英国团队(牛津大学和剑桥大学)之间这项联合研究的总体目的是发展新一代新一代的成本效益,稳定和高度缩放的基于卑鄙的放射探测器,能够检测到三个尺寸范围的剂量率,比当前的商业标准低于当前的商业标准。更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanxi Jia其他文献
Ti-Alloying of BaZrS3 Chalcogenide Perovskite for Photovoltaics
光伏用 BaZrS3 硫系钙钛矿的钛合金化
- DOI:
10.1021/acsomega.0c00740 - 发表时间:
2020-04 - 期刊:
- 影响因子:4.1
- 作者:
Xiucheng Wei;Haolei Hui;Samanthe Perera;Aaron Sheng;David F. Watson;Yi-Yang Sun;Quanxi Jia;Shengbai Zhang;Hao Zeng - 通讯作者:
Hao Zeng
Phase transformations and defect clusters in single crystal SrTiO3 irradiated at different temperatures
不同温度辐照下单晶 SrTiO3 的相变和缺陷簇
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Zhuo;Li Yan;E. Fu;Y. Wang;A. Misra;M. Nastasi;B. Uberuaga;Quanxi Jia - 通讯作者:
Quanxi Jia
Low leakage current BaTiO3 thin film capacitors using a multilayer construction
采用多层结构的低漏电流 BaTiO3 薄膜电容器
- DOI:
10.1016/0040-6090(94)06445-8 - 发表时间:
1995 - 期刊:
- 影响因子:2.1
- 作者:
Quanxi Jia;L. Chang;W. Anderson - 通讯作者:
W. Anderson
Precise Tuning of (YBa2Cu3O7-delta)(1-x):(BaZrO3)(x) Thin Film Nanocomposite Structures
(YBa2Cu3O7-delta)(1-x):(BaZrO3)(x)薄膜纳米复合材料结构的精确调控
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:19
- 作者:
Haiyan Wang;Quanxi Jia;Judith L. MacManus-Driscoll;Hao Yang - 通讯作者:
Hao Yang
Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition
金属有机化学气相沉积法外延生长 RuO2 薄膜
- DOI:
10.1016/s0040-6090(98)01396-0 - 发表时间:
1999 - 期刊:
- 影响因子:2.1
- 作者:
P. Lu;S. He;F. X. Li;Quanxi Jia - 通讯作者:
Quanxi Jia
Quanxi Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanxi Jia', 18)}}的其他基金
Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
- 批准号:
1902623 - 财政年份:2019
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
相似海外基金
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Research Grant
EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizons 2021:人工细胞和生物细胞之间的工程合成突触。
- 批准号:
EP/X018903/1 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Research Grant
EPSRC DTP Research Studentship: Developing a new electro-photosynthesis system for CO2 fixation
EPSRC DTP 研究奖学金:开发用于二氧化碳固定的新型电光合作用系统
- 批准号:
2886510 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Studentship
EPSRC Centre for Doctoral Training in New and Sustainable PV
EPSRC新型和可持续光伏博士培训中心
- 批准号:
EP/L01551X/2 - 财政年份:2021
- 资助金额:
$ 39.9万 - 项目类别:
Training Grant
EPSRC Project Summary: New Methods for Network Time Series Analysis
EPSRC 项目摘要:网络时间序列分析的新方法
- 批准号:
2283002 - 财政年份:2019
- 资助金额:
$ 39.9万 - 项目类别:
Studentship