Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design

合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器

基本信息

  • 批准号:
    1902623
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Non-volatile memory is critical for all aspects of modern computing, as well as for next generation of digital technologies like the Internet of Things and neuromorphic computing. Among non-volatile memory technologies, resistive random access memory based on metal oxide films as resistive switching layers has the potential for high-speed, low operation voltage, low power consumption, and good endurance properties that enable the highest performance at the lowest cost. However, metal oxide resistive random access memory also faces some critical challenges such as the unpredictable forming process. Another challenge is the variable resistive states from one film to another and from one point to another across each film. The collaborative project between the US team (Univ. at Buffalo and Purdue) and the UK team (Univ. of Cambridge) will develop a highly innovative, scalable, and advanced materials technology to overcome the current technical limitations of emerging resistive memory. The materials platform is HfO2, a widely used material in the semiconductor industry. Unlike previous work on this material, the current project will precisely engineer HfO2 microstructures in new ways to create highly controlled switching properties. The broader technological impacts are built on established industry collaborations. The research program is well integrated with education and outreach programs at all three campuses, including: 1) training young researchers with multidisciplinary research skills in an international research environment; 2) implementing resistive memory concepts in materials science and engineering curricula through teaching; 3) disseminating research findings to broader audiences through outreach programs.While commonly-used metal/metal oxide/metal structures for resistive random access memory have conduction filaments that are nucleated randomly, the design in this project incorporates engineered vertical interfaces in either vertically aligned nanocomposite or fine-grained columnar structures to guide the conduction channels. These pre-defined interfaces enable the formation of precise and non-random vertical conducting paths with high densities for high performance resistive random access memory, without the need for a high voltage forming process. This project advances knowledge by combining well-integrated capabilities to synthesize, characterize, design, and fabricate resistive random access memory devices with targeted properties and performance. Specifically, it will translate the ideal engineered materials systems which has been already demonstrated by this team in epitaxial nanocomposites to simple binary oxides such as HfO2 on Si. These films will be initially grown by pulsed laser deposition. The knowledge learned from the films grown by pulsed laser deposition will be then implemented to industrial tools of sputtering and atomic layer deposition to achieve nanoengineered HfO2-based films with ~few nm sized columnar-grains. Finally, individual memristors and crossbar array structures will be fabricated, and the key parameters of the devices characterized. Furthermore, a set of unique characterization tools will be used to reveal the interplay between the device performance and the materials properties. The ultimate goal of the project is to develop a forming-free, highly uniform, high density, low power, high on/off ratio, superior endurance resistive memory through the formation of controlled oxygen vacancy concentration and perfect conducting channels in resistive switching metal oxide layers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非挥发性记忆对于现代计算的各个方面以及下一代数字技术等数字技术至关重要。在非挥发性记忆技术中,基于金属氧化物膜作为电阻开关层的电阻随机访问存储器具有高速,低操作电压,低功耗和良好的耐力特性的潜力,以最低的成本启用最高性能。但是,金属氧化物电阻随机访问记忆也面临着一些关键的挑战,例如不可预测的形成过程。另一个挑战是从一部电影到另一部电影的可变电阻状态,从一个胶片到另一个电影的另一个点。美国团队(布法罗和普渡大学的大学)与英国团队(剑桥大学)之间的合作项目将开发出高度创新,可扩展和高级的材料技术,以克服新兴的抵抗性记忆的当前技术限制。材料平台是HFO2,这是半导体行业中广泛使用的材料。与以前在此材料上的工作不同,当前项目将以新的方式精确地工程HFO2微观结构来创建高度控制的开关属性。更广泛的技术影响建立在既定的行业合作上。该研究计划与所有三个校园的教育和外展计划充分融合,包括:1)在国际研究环境中培训具有多学科研究技能的年轻研究人员; 2)通过教学实施材料科学和工程课程中的电阻记忆概念; 3)通过宣传程序将研究发现传播给更广泛的受众。尽管通常使用的金属/金属氧化物/金属结构用于电阻随机访问记忆的传导丝是随机核定的,但该项目中的设计结合了工程垂直界面,在垂直垂直的纳米机器化材料或精美的柱状柱结构中,以指导置换式通道。这些预定义的界面可以形成具有高密度的精确和非随机垂直导电路径,用于高性能电阻随机访问记忆,而无需高压形成过程。该项目通过结合良好的能力来综合,表征,设计和制造具有目标属性和性能的电阻随机访问记忆设备来提高知识。具体而言,它将转换该团队在外在纳米复合材料中已经证明的理想工程材料系统,为简单的二元氧化物,例如SI上的HFO2。这些薄膜最初将通过脉冲激光沉积而生长。然后将从脉冲激光沉积所生长的膜中学到的知识将被实施到溅射和原子层沉积工业工具,以实现具有〜几个NM尺寸柱状晶粒的基于纳米工程的基于HFO2的膜。最后,将制造单个备忘录和横梁阵列结构,并表征设备的关键参数。此外,将使用一组独特的特征工具来揭示设备性能与材料属性之间的相互作用。该项目的最终目标是通过形成受控的氧气空位浓度和在电阻性切换金属氧化物层中的完美导电渠道来开发一种无形成,高度密度,低功率,高功率,高/关闭/关闭比率,较高的耐​​力抵抗性记忆,这是NSF的法定任务的审查,反映出了值得的依据,该奖项的范围是通过评估的范围。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Role of Oxygen Transfer in Oxide Heterostructures on Functional Properties
  • DOI:
    10.1002/admi.202101867
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Zachary J Corey;H. H. Han-H.;Kyeong Tae Kang;Xuejing Wang;R. Lalk;Binod Paudel;P. Roy;Y. Sharma;Jinkyoung Yoo;Quanxi Jia;Aiping Chen
  • 通讯作者:
    Zachary J Corey;H. H. Han-H.;Kyeong Tae Kang;Xuejing Wang;R. Lalk;Binod Paudel;P. Roy;Y. Sharma;Jinkyoung Yoo;Quanxi Jia;Aiping Chen
A pathway to desired functionalities in vertically aligned nanocomposites and related architectures
  • DOI:
    10.1557/s43577-021-00032-4
  • 发表时间:
    2021-02-18
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Chen, Aiping;Jia, Quanxi
  • 通讯作者:
    Jia, Quanxi
Metallic interface induced by electronic reconstruction in crystalline-amorphous bilayer oxide films
晶体-非晶双层氧化物薄膜中电子重构诱导的金属界面
  • DOI:
    10.1016/j.scib.2019.08.026
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Lü, Xujie;Chen, Aiping;Dai, Yaomin;Wei, Bin;Xu, Hongwu;Wen, Jianguo;Li, Nan;Luo, Yongkang;Gao, Xiang;Enriquez, Erik
  • 通讯作者:
    Enriquez, Erik
A Facile Aqueous Solution Route for the Growth of Chalcogenide Perovskite BaZrS3 Films
  • DOI:
    10.3390/photonics10040366
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    S. Dhole;Xiucheng Wei;Haolei Hui;P. Roy;Zachary J Corey;Yongqiang Wang;W. Nie;Aiping Chen;Hao Zeng;Quanxi Jia
  • 通讯作者:
    S. Dhole;Xiucheng Wei;Haolei Hui;P. Roy;Zachary J Corey;Yongqiang Wang;W. Nie;Aiping Chen;Hao Zeng;Quanxi Jia
Reducing leakage current and enhancing polarization in multiferroic 3D super-nanocomposites by microstructure engineering
通过微结构工程减少多铁性 3D 超纳米复合材料中的漏电流并增强极化
  • DOI:
    10.1088/1361-6528/ac5f98
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Enriquez, Erik;Lu, Ping;Li, Leigang;Zhang, Bruce;Wang, Haiyan;Jia, Quanxi;Chen, Aiping
  • 通讯作者:
    Chen, Aiping
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanxi Jia其他文献

Ti-Alloying of BaZrS3 Chalcogenide Perovskite for Photovoltaics
光伏用 BaZrS3 硫系钙钛矿的钛合金化
  • DOI:
    10.1021/acsomega.0c00740
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xiucheng Wei;Haolei Hui;Samanthe Perera;Aaron Sheng;David F. Watson;Yi-Yang Sun;Quanxi Jia;Shengbai Zhang;Hao Zeng
  • 通讯作者:
    Hao Zeng
Phase transformations and defect clusters in single crystal SrTiO3 irradiated at different temperatures
不同温度辐照下单晶 SrTiO3 的相变和缺陷簇
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Zhuo;Li Yan;E. Fu;Y. Wang;A. Misra;M. Nastasi;B. Uberuaga;Quanxi Jia
  • 通讯作者:
    Quanxi Jia
Low leakage current BaTiO3 thin film capacitors using a multilayer construction
采用多层结构的低漏电流 BaTiO3 薄膜电容器
  • DOI:
    10.1016/0040-6090(94)06445-8
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Quanxi Jia;L. Chang;W. Anderson
  • 通讯作者:
    W. Anderson
Precise Tuning of (YBa2Cu3O7-delta)(1-x):(BaZrO3)(x) Thin Film Nanocomposite Structures
(YBa2Cu3O7-delta)(1-x):(BaZrO3)(x)薄膜纳米复合材料结构的精确调控
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Haiyan Wang;Quanxi Jia;Judith L. MacManus-Driscoll;Hao Yang
  • 通讯作者:
    Hao Yang
Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition
金属有机化学气相沉积法外延生长 RuO2 薄膜
  • DOI:
    10.1016/s0040-6090(98)01396-0
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    P. Lu;S. He;F. X. Li;Quanxi Jia
  • 通讯作者:
    Quanxi Jia

Quanxi Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanxi Jia', 18)}}的其他基金

ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
  • 批准号:
    2313755
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
  • 批准号:
    2233503
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS: Small: Personalized RF Sensing: Learning Optimal Representations of Human Activities and Ethogram on the Fly
合作研究:ECCS:小型:个性化射频传感:学习人类活动的最佳表示和动态行为图
  • 批准号:
    2233536
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152528
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了