Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
基本信息
- 批准号:2311876
- 负责人:
- 金额:$ 58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data is the fourth pillar of the science methodology. However, rapidly expanding volumes and velocities of scientific data generated by simulation and instrument facilities present serious storage capacity, storage and network bandwidth, and data analysis challenges for many sciences. These challenges ultimately limit research discovery which would promote prosperity and welfare. Many research groups are exploring the use of data reduction techniques to address these challenges because lossy compression for scientific data offers a reliable, high-speed, and high-fidelity solution. However, existing generic lossy compressors often do not correspond to user-specific applications, use cases, and requirements in terms of reduction, speed, and information preservation. Hence, many potential users of lossy compressors for scientific data develop their own specialized lossy compression software, an effort that requires tremendous collaboration between compressor experts and domain scientists, demands extensive coding to optimize performance on multiple platforms, and often leads to redundant research and development efforts. This project aims to create a framework, called FZ, that revolutionizes the development of specialized lossy compressors by providing a comprehensive ecosystem to enable scientific users to intuitively research, compose, implement, and test specialized lossy compressors from a library of pre-developed, high-performance data reduction modules optimized for heterogeneous platforms. This project also contributes to the education and training of undergraduate and graduate students by enhancing the quality of computing-related curricula in scientific data management, compression, and visualization and through outreach activities at four universities. This project builds FZ, an intuitive cyberinfrastructure for the composition of specialized lossy compressors, by adapting, combining, and extending multiple existing capabilities from the SZ lossy compressor, the LibPressio unifying compression interface, the OptZConfig optimizer of compressor configurations, the Z-checker and QCAT compression quality analysis tools, and the Paraview and VTK visualization tools. The project has three thrusts: (1) It develops programming interfaces and a compressor generator to create new compressors from high-level languages such as Python and optimize their execution. (2) It refactors the SZ lossy compressors infrastructure to enable fine-grained composability of a large diversity of data transformation modules and integrate non-uniform compression capabilities, new preprocessing, decorrelation, approximation, and entropy coding data transformation modules to produce specialized lossy compressors. (3) It provides interactive visualization, quality assessment, and graphical user interface (GUI) tools that adapt and extend existing capabilities to automatically search optimized lossy compression module compositions and to identify relevant compression ratio, speed, and quality trade-offs for their use cases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据是科学方法论的第四个支柱。然而,模拟和仪器设施生成的科学数据的数量和速度迅速增长,给许多科学领域带来了严峻的存储容量、存储和网络带宽以及数据分析挑战。这些挑战最终限制了促进繁荣和福利的研究发现。许多研究小组正在探索使用数据缩减技术来应对这些挑战,因为科学数据的有损压缩提供了可靠、高速和高保真的解决方案。然而,现有的通用有损压缩器通常不符合用户特定的应用、用例以及在缩减、速度和信息保存方面的要求。因此,科学数据有损压缩器的许多潜在用户开发了自己的专用有损压缩软件,这项工作需要压缩器专家和领域科学家之间的大量协作,需要大量编码以优化多个平台上的性能,并且常常导致冗余的研发努力。该项目旨在创建一个名为 FZ 的框架,通过提供一个全面的生态系统,使科学用户能够从预先开发的高可用库中直观地研究、编写、实施和测试专用有损压缩机,从而彻底改变专用有损压缩机的开发。 - 针对异构平台优化的性能数据缩减模块。该项目还通过提高科学数据管理、压缩和可视化方面的计算相关课程的质量以及通过四所大学的推广活动,为本科生和研究生的教育和培训做出贡献。该项目通过调整、组合和扩展 SZ 有损压缩机、LibPressio 统一压缩接口、压缩机配置的 OptZConfig 优化器、Z-checker 和QCAT 压缩质量分析工具,以及 Paraview 和 VTK 可视化工具。该项目有三个主旨:(1)开发编程接口和压缩器生成器,以从Python等高级语言创建新的压缩器并优化其执行。 (2)它重构了SZ有损压缩器基础设施,以实现多种数据转换模块的细粒度可组合性,并集成非均匀压缩功能、新的预处理、去相关、近似和熵编码数据转换模块,以产生专门的有损压缩器。 (3) 它提供交互式可视化、质量评估和图形用户界面 (GUI) 工具,这些工具适应和扩展现有功能,以自动搜索优化的有损压缩模块组合,并确定其使用的相关压缩比、速度和质量权衡该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dingwen Tao其他文献
Extending checksum-based ABFT to tolerate soft errors online in iterative methods
扩展基于校验和的 ABFT 以容忍迭代方法中的在线软错误
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Longxiang Chen;Dingwen Tao;Panruo Wu;Zizhong Chen - 通讯作者:
Zizhong Chen
Z-checker: A framework for assessing lossy compression of scientific data
Z-checker:评估科学数据有损压缩的框架
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Dingwen Tao;S. Di;Hanqi Guo;Zizhong Chen;F. Cappello - 通讯作者:
F. Cappello
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
FastCLIP:一套优化技术,可利用有限的资源加速 CLIP 培训
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xiyuan Wei;Fanjiang Ye;Ori Yonay;Xingyu Chen;Baixi Sun;Dingwen Tao;Tianbao Yang - 通讯作者:
Tianbao Yang
SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors
SDRBench:有损压缩机的科学数据缩减基准
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Kai Zhao;S. Di;Xin Liang;Sihuan Li;Dingwen Tao;J. Bessac;Zizhong Chen;F. Cappello - 通讯作者:
F. Cappello
HQ-Sim: High-performance State Vector Simulation of Quantum Circuits on Heterogeneous HPC Systems
HQ-Sim:异构 HPC 系统上量子电路的高性能状态向量仿真
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bo Zhang;B. Fang;Qiang Guan;A. Li;Dingwen Tao - 通讯作者:
Dingwen Tao
Dingwen Tao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dingwen Tao', 18)}}的其他基金
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
- 批准号:
2232120 - 财政年份:2023
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
- 批准号:
2326495 - 财政年份:2023
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
- 批准号:
2312673 - 财政年份:2023
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
- 批准号:
2303064 - 财政年份:2022
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
CRII: OAC: An Efficient Lossy Compression Framework for Reducing Memory Footprint for Extreme-Scale Deep Learning on GPU-Based HPC Systems
CRII:OAC:一种有效的有损压缩框架,可减少基于 GPU 的 HPC 系统上超大规模深度学习的内存占用
- 批准号:
2303820 - 财政年份:2022
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
- 批准号:
2247060 - 财政年份:2022
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
- 批准号:
2247080 - 财政年份:2022
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
- 批准号:
2211539 - 财政年份:2022
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
- 批准号:
2104024 - 财政年份:2021
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
- 批准号:
2042084 - 财政年份:2020
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
相似国自然基金
中国外来入侵植物优先管理框架研究:分布格局、驱动因素与潜在分布区的综合分析
- 批准号:32372565
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金属有机框架对M-Nx基PEMFCs阴极催化层的多重调控机制研究
- 批准号:22375017
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于新框架土壤生物促进或抑制外来植物入侵发生条件和机制研究
- 批准号:32371749
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于共价有机框架薄膜的气体传感器及其敏感机理研究
- 批准号:62371299
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 58万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 58万 - 项目类别:
Standard Grant