Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements

合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施

基本信息

  • 批准号:
    2247080
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

Today’s simulations and advanced instruments are producing vast volumes of data, presenting a major storage and I/O burden for scientists. Error-bounded lossy compressors, which can significantly reduce the data volume while controlling data distortion with a constant error bound, have been developed for years. However, a significant gap still remains in practice. On the one hand, the impact of the compression errors on scientific research is not well understood, so how to set an appropriate error bound for lossy compression is very challenging. On the other hand, how to select the best fit compression technology and run it automatically in scientific application codes is non-trivial because of strengths and weaknesses of different compression techniques and diverse characteristics of applications and datasets. This project aims to develop a Requirement-Oriented Compression Cyber-Infrastructure (ROCCI) for data-intensive domains such as astrophysics and materials science, which can select and run the best fit lossy compressor automatically at runtime, in terms of user's requirement on their post hoc analysis.The overarching goal of this project is to offer a complete series of automatic functions and services allowing users to transparently run the best fit compressor at runtime during the scientific simulations or data acquisition. This project advances knowledge and understanding with three key thrusts: (1) it builds an efficient layer to interoperate with different lossy compressors and diverse post hoc analysis requirements on data fidelity by leveraging an existing compression adaptor library (LibPressio) and compression assessment library (Z-checker); (2) it develops an efficient engine to determine the best fit compressor with optimized settings based on user’s post-hoc analysis requirements; and (3) it develops a user-friendly infrastructure that integrates compression optimization and execution via the HDF5 dynamic filter mechanism. This project particularly targets cosmology and materials science applications and their specific requirements of using lossy compressors in practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的仿真和高级仪器正在生产大量数据,并为科学家提供了重大存储,并燃烧了I/O。多年来,已经开发了误差损耗压缩机,该压缩机可以显着减少数据量,同时以恒定的误差绑定来控制数据量失真。但是,实践中仍然存在很大的差距。一方面,尚不清楚压缩错误对科学研究的影响,因此如何为损失压缩设定适当的错误是非常挑战的。另一方面,如何选择最佳拟合压缩技术并在科学应用程序代码中自动运行它,这是非平凡的,因为不同压缩技术的优势和劣势以及应用程序和数据集的各种特征。该项目旨在为数据密集型领域(例如天体物理学和材料科学)开发面向需求的压缩网络内部结构(ROCCI),可以选择和运行最佳合适的有损压缩机,在运行时自动在运行时,就用户在HOC的速度分析方面,该项目允许自动跑步的跑步型和跑步的跑步。科学模拟或数据获取。该项目通过三个关键的推动力提高知识和理解:(1)它通过利用现有的压缩适配器库(LIBPRESSIO)(libpressio)和压缩评估库(z-Checkecker)(Z-Checker)(Z-Checker)来建立与不同的损耗压缩机相互互操作的有效层和有关数据保真度的不同之后的层; (2)根据用户的事后分析要求,它开发了有效的引擎,以确定最佳拟合压缩机,并通过优化的设置; (3)它开发了一种用户友好的基础架构,该基础架构通过HDF5动态滤波器机制集成了压缩优化和执行。该项目尤其针对宇宙学和材料科学应用及其在实践中使用有损压缩机的具体要求。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被视为通过评估来获得珍贵的支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
cuZ-Checker: A GPU-Based Ultra-Fast Assessment System for Lossy Compressions
cuZ-Checker:基于 GPU 的有损压缩超快速评估系统
Ultrafast Error-Bounded Lossy Compression for Scientific Datasets
科学数据集的超快误差限制有损压缩
Optimizing Error-Bounded Lossy Compression for Scientific Data With Diverse Constraints
优化具有不同约束的科学数据的误差有限有损压缩
  • DOI:
    10.1109/tpds.2022.3194695
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Liu, Yuanjian;Di, Sheng;Zhao, Kai;Jin, Sian;Wang, Cheng;Chard, Kyle;Tao, Dingwen;Foster, Ian;Cappello, Franck
  • 通讯作者:
    Cappello, Franck
Optimizing Error-Bounded Lossy Compression for Scientific Data on GPUs
优化 GPU 上科学数据的误差有限有损压缩
FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific Computing Applications on GPUs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dingwen Tao其他文献

Extending checksum-based ABFT to tolerate soft errors online in iterative methods
扩展基于校验和的 ABFT 以容忍迭代方法中的在线软错误
Z-checker: A framework for assessing lossy compression of scientific data
Z-checker:评估科学数据有损压缩的框架
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
FastCLIP:一套优化技术,可利用有限的资源加速 CLIP 培训
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiyuan Wei;Fanjiang Ye;Ori Yonay;Xingyu Chen;Baixi Sun;Dingwen Tao;Tianbao Yang
  • 通讯作者:
    Tianbao Yang
SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors
SDRBench:有损压缩机的科学数据缩减基准
HQ-Sim: High-performance State Vector Simulation of Quantum Circuits on Heterogeneous HPC Systems
HQ-Sim:异构 HPC 系统上量子电路的高性能状态向量仿真

Dingwen Tao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dingwen Tao', 18)}}的其他基金

CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2232120
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311876
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
  • 批准号:
    2326495
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2312673
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
  • 批准号:
    2303064
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CRII: OAC: An Efficient Lossy Compression Framework for Reducing Memory Footprint for Extreme-Scale Deep Learning on GPU-Based HPC Systems
CRII:OAC:一种有效的有损压缩框架,可减少基于 GPU 的 HPC 系统上超大规模深度学习的内存占用
  • 批准号:
    2303820
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
  • 批准号:
    2247060
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
  • 批准号:
    2211539
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
  • 批准号:
    2104024
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
  • 批准号:
    2042084
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

杨柳坪超大型Cu-Ni-PGE矿床硫化物熔体固化过程铂族元素地球化学行为精细研究
  • 批准号:
    42303019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深海沉积物中稀土元素超常富集机制――基于富稀土沉积物与水岩实验的对比研究
  • 批准号:
    42372116
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
微量元素钒调控能量代谢用于监控结直肠癌治疗及转移抑制的机制研究
  • 批准号:
    62305121
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
稻米镁元素积累新主效QTL克隆和功能研究及其育种利用
  • 批准号:
    32372095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于可控同位素中子源的月表元素探测机制与载荷实现关键技术研究
  • 批准号:
    42374226
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
  • 批准号:
    2411387
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了