CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications

职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架

基本信息

  • 批准号:
    2232120
  • 负责人:
  • 金额:
    $ 46.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

This CAREER project researches and develops novel algorithms and software to improve the efficacy, usability, performance, and scalability of data reduction for high-performance computing (HPC) systems and applications. It contributes to the cyberinfrastructure (CI) of big data management for HPC applications in many domains such as cosmology, climatology, seismology, and machine learning. The research findings will be widely disseminated through open-source software packages and publications in premier conferences and journals. An integrated educational and outreach program is designed to foster CI workforce development, including integration of concepts and use of data reduction in curricula, research training for undergraduate and graduate students, and a specially designed training program for scientists and engineers from universities and national labs.This CAREER project simultaneously addresses these four critical issues in scientific data reduction through comprehensive analytical modeling and architectural performance optimization. Specific scientific contributions include: (1) it builds lightweight models to accurately estimate the compression ratio and quality of different techniques in the prediction and encoding stages of prediction-based compression, and optimizes the compression configurations to maximize the compression ratio under compression quality constraints; (2) it develops new efficient predictors and lossless encoding methods for lossy compression of scientific data on GPUs with deep architectural optimizations to achieve both high throughput and ratio; and (3) it deeply integrates the optimized compression with parallel I/O and MPI libraries with a series of optimizations to improve the performance of data movements and the scalability of HPC applications. The success of this research agenda enables scientists and engineers to well address the increasingly severe challenge of scientific data explosion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业项目研究和开发新颖的算法和软件,以提高高性能计算 (HPC) 系统和应用程序的数据缩减的功效、可用性、性能和可扩展性。它为宇宙学、气候学、地震学和机器学习等许多领域的 HPC 应用程序的大数据管理网络基础设施 (CI) 做出了贡献。研究结果将通过开源软件包以及在重要会议和期刊上发表的出版物来广泛传播。综合教育和推广计划旨在促进 CI 劳动力发展,包括在课程中整合概念和使用数据缩减、本科生和研究生的研究培训,以及为大学和国家实验室的科学家和工程师专门设计的培训计划。该职业项目通过全面的分析建模和架构性能优化,同时解决了科学数据缩减中的这四个关键问题。具体的科学贡献包括:(1)构建轻量级模型,准确估计基于预测的压缩的预测和编码阶段不同技术的压缩比和质量,并优化压缩配置,以在压缩质量约束下最大化压缩比; (2)开发新的高效预测器和无损编码方法,用于在 GPU 上对科学数据进行有损压缩,并进行深度架构优化,以实现高吞吐量和高比率; (3)将优化压缩与并行I/O和MPI库深度集成,通过一系列优化来提高数据移动的性能和HPC应用的可扩展性。该研究议程的成功使科学家和工程师能够很好地应对科学数据爆炸日益严峻的挑战。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific Computing Applications on GPUs
TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware Tucker Decomposition
AMRIC: A Novel In Situ Lossy Compression Framework for Efficient I/O in Adaptive Mesh Refinement Applications
AMRIC:一种新颖的原位有损压缩框架,可在自适应网格细化应用中实现高效 I/O
  • DOI:
    10.1145/3581784.3613212
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Daoce;Pulido, Jesus;Grosset, Pascal;Tian, Jiannan;Jin, Sian;Tang, Houjun;Sexton, Jean;Di, Sheng;Zhao, Kai;Fang, Bo
  • 通讯作者:
    Fang, Bo
GPULZ: Optimizing LZSS Lossless Compression for Multi-byte Data on Modern GPUs
GPULZ:在现代 GPU 上优化多字节数据的 LZSS 无损压缩
HEAT: A Highly Efficient and Affordable Training System for Collaborative Filtering Based Recommendation on CPUs
  • DOI:
    10.1145/3577193.3593717
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengming Zhang;Shaden Smith;Baixi Sun;Jiannan Tian;Jon Soifer;Xiaodong Yu;S. Song;Yuxiong He-Yuxiong
  • 通讯作者:
    Chengming Zhang;Shaden Smith;Baixi Sun;Jiannan Tian;Jon Soifer;Xiaodong Yu;S. Song;Yuxiong He-Yuxiong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dingwen Tao其他文献

Extending checksum-based ABFT to tolerate soft errors online in iterative methods
扩展基于校验和的 ABFT 以容忍迭代方法中的在线软错误
Z-checker: A framework for assessing lossy compression of scientific data
Z-checker:评估科学数据有损压缩的框架
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
FastCLIP:一套优化技术,可利用有限的资源加速 CLIP 培训
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiyuan Wei;Fanjiang Ye;Ori Yonay;Xingyu Chen;Baixi Sun;Dingwen Tao;Tianbao Yang
  • 通讯作者:
    Tianbao Yang
SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors
SDRBench:有损压缩机的科学数据缩减基准
HQ-Sim: High-performance State Vector Simulation of Quantum Circuits on Heterogeneous HPC Systems
HQ-Sim:异构 HPC 系统上量子电路的高性能状态向量仿真

Dingwen Tao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dingwen Tao', 18)}}的其他基金

Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311876
  • 财政年份:
    2023
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
  • 批准号:
    2326495
  • 财政年份:
    2023
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2312673
  • 财政年份:
    2023
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
  • 批准号:
    2303064
  • 财政年份:
    2022
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
CRII: OAC: An Efficient Lossy Compression Framework for Reducing Memory Footprint for Extreme-Scale Deep Learning on GPU-Based HPC Systems
CRII:OAC:一种有效的有损压缩框架,可减少基于 GPU 的 HPC 系统上超大规模深度学习的内存占用
  • 批准号:
    2303820
  • 财政年份:
    2022
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
  • 批准号:
    2247060
  • 财政年份:
    2022
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
  • 批准号:
    2247080
  • 财政年份:
    2022
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
  • 批准号:
    2211539
  • 财政年份:
    2022
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
  • 批准号:
    2104024
  • 财政年份:
    2021
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
  • 批准号:
    2042084
  • 财政年份:
    2020
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant

相似国自然基金

高度杂泛性的植物糖基转移酶UGT74AN3的功能、结构和应用研究
  • 批准号:
    82304333
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于消费级装备的不同高度单株立木实景三维建模方法
  • 批准号:
    32371867
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
环北极地区泰加林冠层高度的遥感反演和制图研究
  • 批准号:
    42306254
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新候选基因NAALAD2在高度近视发生发展过程中的作用机理研究
  • 批准号:
    82301223
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑曲率的卫星高度计海表流场的修正及应用研究
  • 批准号:
    42306028
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating the Role of p21-Highly Expressing Senescent Cells in Alzheimer's Dementia
研究 p21 高表达衰老细胞在阿尔茨海默氏痴呆中的作用
  • 批准号:
    10606953
  • 财政年份:
    2023
  • 资助金额:
    $ 46.78万
  • 项目类别:
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2312673
  • 财政年份:
    2023
  • 资助金额:
    $ 46.78万
  • 项目类别:
    Standard Grant
The Role of Highly inflamed Epicardial Adipose Tissue in the Development of Atrial Fibrillation
高度炎症的心外膜脂肪组织在心房颤动发展中的作用
  • 批准号:
    10526040
  • 财政年份:
    2022
  • 资助金额:
    $ 46.78万
  • 项目类别:
Endocrine and metabolic diseases in rural South Africa-establishing burden and improving detection
南非农村地区的内分泌和代谢疾病——确定负担并改进检测
  • 批准号:
    9904333
  • 财政年份:
    2017
  • 资助金额:
    $ 46.78万
  • 项目类别:
Endocrine and metabolic diseases in rural South Africa-establishing burden and improving detection
南非农村地区的内分泌和代谢疾病——确定负担并改进检测
  • 批准号:
    9402126
  • 财政年份:
    2017
  • 资助金额:
    $ 46.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了