The Evolutionary Origin of Non-Equilibrium Order

非平衡秩序的进化起源

基本信息

  • 批准号:
    2310781
  • 负责人:
  • 金额:
    $ 79.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This project aims to understand the evolutionary origin of kinetic proofreading, a mechanism that increases biochemical accuracy while consuming energy. Proofreading mechanisms are thought to be exploited by numerous biological processes, ranging from the replication of DNA to pass information with fidelity down over generations to the immune system to distinguish foreign viral proteins from our own. While the biophysics of kinetic proofreading are understood, the forces that led to its evolution are still unknown. Intuition and current theory predicts that molecular machines that are more accurate will be slower because they spend more time checking errors. However, these theories have not been tested and this project will test whether higher accuracy implies higher speed or lower speed. Some data has suggested that counterintuitively, more accurate molecular machines might in fact be faster. In this award, the research team will develop a novel experimental platform to study the evolution of this mechanism in DNA polymerases, the molecular machines that copy information in our DNA so it can be transmitted over generations. This novel platform will allow the researchers to study the speed and accuracy of 1000s of mutants of this machine in a single experiment. The research team will exploit this platform to evolve DNA polymerases for higher speed alone, without any selection for higher or lower accuracy and measure the resulting mutation rates. In this way, the team will the hypothesis that proofreading in polymerases can evolve due to selection for higher speed, even without selection for accuracy. The team will then develop a theoretical framework for the origin of non-equilibrium order, extending current models to include memory effects and entropy of mutations.This research will have important consequences for our understanding of how mutation rates in viruses and pathogens can help them avoid the immune system. Viruses must mutate to evade the human immune system and propagate but the rate at which viruses mutate is a double-edged sword. This rate of mutations for a virus is partly determined by the viral replication machinery and its proofreading abilities. The work here will inform the development of new treatments that target proofreading during viral replication and increase mutation rates to a point where viral fitness is harmed. The results will also be useful in bioengineering, where balancing speed and accuracy is crucial for enzymes like Rubisco, which is important for carbon fixation. It is often believed that if a molecular machine like an enzyme works quickly, it is less accurate. However, this research will determine when faster enzymes can be more accurate too. Knowing when this happens is important for creating useful enzymes for commercial and medical applications.The project will also advance our understanding of a frontier region of physics, namely non-equilibrium dynamics. While physicists have a deep understanding and predictive frameworks for passive equilibrium systems, physicists lack general theoretical frameworks for understanding how systems can consume energy and create more ordered states than otherwise possible. This project will reveal relationships between energy cost, time cost and accuracy in non-equilibrium systems.The interdisciplinary research will educate a new generation of students skilled in both non-equilibrium statistical mechanics and molecular biology techniques. The project will train a physics graduate student and involving undergraduates from biological and biomedical sciences at the University of Chicago, exposing them to the benefits of quantitative and physics-oriented thinking in biology. To reach a wider audience, a series of demos and games called "Thriving through mistakes" will be developed. These activities, similar to the Wordle game, will teach about the role of mutations in virus evolution and how quantitative research can help create treatments that target these processes. These educational resources will be shared with local K-12 students on the South Side of Chicago through outreach events on campus.This award is co-funded by the Genetic Mechanisms and Molecular Biophysics programs in the Division of Molecular and Cellular Biosciences/Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在了解动力学校对的进化起源,这是一种在消耗能量的同时提高生化准确性的机制。校对机制被认为被许多生物过程所利用,从DNA复制以保真地传递信息到免疫系统以区分外来病毒蛋白和我们自己的病毒蛋白。 虽然动力学校对的生物物理学已被了解,但导致其进化的力量仍然未知。直觉和当前的理论预测,更准确的分子机器会更慢,因为它们花费更多的时间来检查错误。然而,这些理论尚未经过测试,该项目将测试更高的精度是否意味着更高的速度或更低的速度。一些数据表明,与直觉相反,更精确的分子机器实际上可能更快。在这个奖项中,研究团队将开发一个新颖的实验平台来研究 DNA 聚合酶中这种机制的演变,DNA 聚合酶是一种分子机器,可以复制 DNA 中的信息,以便可以代代相传。这个新颖的平台将使研究人员能够在一次实验中研究该机器的数千个突变体的速度和准确性。 研究团队将利用这个平台来进化 DNA 聚合酶,以提高速度,而不选择更高或更低的准确性,并测量由此产生的突变率。通过这种方式,该团队将假设聚合酶的校对可以由于选择更高的速度而进化,即使没有选择准确性。然后,该团队将开发一个非平衡秩序起源的理论框架,扩展当前模型以包括记忆效应和突变熵。这项研究将对我们理解病毒和病原体的突变率如何帮助它们避免产生重要影响。免疫系统。病毒必须变异才能逃避人类免疫系统并传播,但病毒变异的速度是一把双刃剑。病毒的突变率部分取决于病毒复制机制及其校对能力。 这里的工作将为开发新的治疗方法提供信息,这些治疗方法的目标是在病毒复制过程中进行校对,并将突变率提高到病毒适应性受到损害的程度。这些结果在生物工程中也很有用,其中平衡速度和准确性对于像 Rubisco 这样的酶至关重要,而 Rubisco 对碳固定很重要。 人们通常认为,如果像酶这样的分子机器工作速度很快,那么它的准确性就会降低。然而,这项研究将确定何时更快的酶也可以更准确。了解这种情况何时发生对于创造用于商业和医疗应用的有用酶非常重要。该项目还将增进我们对物理学前沿领域(即非平衡动力学)的理解。虽然物理学家对被动平衡系统有深入的理解和预测框架,但物理学家缺乏通用的理论框架来理解系统如何消耗能量并创造比其他方式更有序的状态。该项目将揭示非平衡系统中能量成本、时间成本和准确性之间的关系。跨学科研究将培养精通非平衡统计力学和分子生物学技术的新一代学生。该项目将培训一名物理学研究生,并让芝加哥大学生物和生物医学科学专业的本科生参与其中,让他们接触到生物学中定量和物理导向思维的好处。 为了吸引更广泛的受众,将开发一系列名为“通过错误实现繁荣”的演示和游戏。这些活动与 Wordle 游戏类似,将教授突变在病毒进化中的作用,以及定量研究如何帮助创建针对这些过程的治疗方法。这些教育资源将通过校园外展活动与芝加哥南区当地的 K-12 学生共享。该奖项由分子和细胞生物科学部/生物理事会的遗传机制和分子生物物理学项目共同资助科学。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arvind Murugan其他文献

Arvind Murugan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arvind Murugan', 18)}}的其他基金

CAREER: Learning and Information Processing in Non-linear Mechanical Systems
职业:非线性机械系统中的学习和信息处理
  • 批准号:
    2239801
  • 财政年份:
    2023
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

人胚早期造血干细胞非依赖造血的起源研究
  • 批准号:
    82370107
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
蔗糖非发酵相关蛋白激酶(SNRK)对肥胖诱导的脂肪组织炎症起源的调控作用及机制
  • 批准号:
    82073528
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
雄激素受体非依赖的增殖性上皮细胞在前列腺再生、肿瘤发生及进展中的作用研究
  • 批准号:
    81902609
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
非鸟虚骨龙类肢骨生态形态学研究及鸟类飞行起源中的行动方式演化
  • 批准号:
    41972025
  • 批准年份:
    2019
  • 资助金额:
    67 万元
  • 项目类别:
    面上项目
非晶合金塑性流动失稳的动力学起源
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
  • 批准号:
    8826738
  • 财政年份:
    2013
  • 资助金额:
    $ 79.99万
  • 项目类别:
Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
  • 批准号:
    8482670
  • 财政年份:
    2013
  • 资助金额:
    $ 79.99万
  • 项目类别:
Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
  • 批准号:
    8627167
  • 财政年份:
    2013
  • 资助金额:
    $ 79.99万
  • 项目类别:
Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
  • 批准号:
    9041579
  • 财政年份:
    2013
  • 资助金额:
    $ 79.99万
  • 项目类别:
Evolutionary Origin and History of Antifreeze Glycoprotein Gene in the Northern Cod Fishes (Gadidae): Creating Sense from Non-Sense DNA?
北方鳕鱼(Gadidae)抗冻糖蛋白基因的进化起源和历史:从无义 DNA 中创造有义?
  • 批准号:
    0919496
  • 财政年份:
    2009
  • 资助金额:
    $ 79.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了