Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
基本信息
- 批准号:8826738
- 负责人:
- 金额:$ 41.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteArchitectureBenchmarkingBioinformaticsBiologicalBiologyClinicalClinical DataCommunitiesComplexComputersDataData SetDatabasesDetectionDevelopmentDiagnosticDiseaseDisease MarkerEthnic OriginFunctional disorderGene FrequencyGenesGeneticGenetic VariationGenomeGenomicsHealthHumanIndividualKnowledgeLeadLearningMeasuresMedicineMethodsMusNetwork-basedNon-Insulin-Dependent Diabetes MellitusOperating SystemPathway AnalysisPathway interactionsPatientsPerformancePopulationPopulation HeterogeneityPositioning AttributeResearchSensitivity and SpecificitySoftware ToolsSource CodeTechnologyTraining and EducationTranslatingVariantWorkbasecohortdiabetes mellitus geneticsdisease phenotypeexomefunctional genomicsgenetic associationgenetic variantgenome wide association studyhigh throughput analysishuman tissueimprovednovelnovel strategiesprogramstherapy outcometooltrait
项目摘要
DESCRIPTION (provided by applicant): Genetic association studies have been successful in identifying >1,000 genetic loci associated with complex disease traits in human populations. However, it remains a central challenge to interpret the vast amounts of data generated by GWAS studies towards an improved understanding of disease markers and, thus, mechanisms, which are critical for translating GWAS findings into genomic medicine applications enabling improvements in diagnostics, therapies, and outcomes. Recent efforts to incorporate prior biological information into GWAS analysis has greatly enhanced the interpretation of GWAS findings by providing biological frameworks for prioritizing associations, and for interpreting multiple associated loci within the contexts of biological networks and pathways. We recently demonstrated that position-specific evolutionary priors could be incorporated into analysis of GWAS results to prioritize variants that were more reproducible across studies. We propose to develop, investigate, and apply evolutionary informed integrative methods that embrace and leverage the genetic complexity of common disease. We hypothesize that position-specific evolutionary features can be incorporated into multiscale biological pathway and network analysis, and that evolutionary informed pathway and network analysis can be applied to existing GWAS and clinical data sets to identify mechanisms giving rise to complex disease phenotypes in populations and individuals. We propose to develop and evaluate these hypotheses through pursuit of the following specific aims: (1) Develop novel evolutionary-informed pathway and network analysis method for interpreting GWAS findings. (2) Apply novel methods to established GWAS and clinical data for T2D to elucidate disease mechanisms underlying the genetic architecture across populations. (3) Develop a public database and software tool to enable evolutionary informed network analysis of GWAS findings for the broader research community.
描述(由申请人提供):遗传关联研究已成功识别出超过 1,000 个与人群中复杂疾病特征相关的遗传位点。然而,解释 GWAS 研究生成的大量数据以提高对疾病标志物和机制的理解仍然是一个核心挑战,这对于将 GWAS 研究结果转化为基因组医学应用,从而改进诊断、治疗和治疗至关重要。结果。最近将先前的生物信息纳入 GWAS 分析的努力通过提供用于优先关联的生物框架以及解释生物网络和通路背景下的多个相关位点,极大地增强了 GWAS 结果的解释。我们最近证明,位置特定的进化先验可以纳入 GWAS 结果的分析中,以优先考虑在研究中更具可重复性的变异。我们建议开发、研究和应用进化信息综合方法,包含并利用常见疾病的遗传复杂性。我们假设位置特异性进化特征可以纳入多尺度生物途径和网络分析中,并且进化知情途径和网络分析可以应用于现有的 GWAS 和临床数据集,以识别在人群和个体中引起复杂疾病表型的机制。我们建议通过追求以下具体目标来发展和评估这些假设:(1)开发新的进化途径和网络分析方法来解释 GWAS 结果。 (2) 将新方法应用于已建立的 GWAS 和 T2D 临床数据,以阐明跨人群遗传结构背后的疾病机制。 (3) 开发公共数据库和软件工具,以便为更广泛的研究界对 GWAS 研究结果进行进化知情网络分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Thomas Dudley其他文献
Joel Thomas Dudley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Thomas Dudley', 18)}}的其他基金
Integrated understanding of complex viral network biology in Alzheimer's Disease
对阿尔茨海默病复杂病毒网络生物学的综合理解
- 批准号:
9557996 - 财政年份:2017
- 资助金额:
$ 41.46万 - 项目类别:
Pre-clinical Testing of a Novel Therapeutic for Nonalcoholic Steatohepatitis
非酒精性脂肪性肝炎新疗法的临床前测试
- 批准号:
9386379 - 财政年份:2017
- 资助金额:
$ 41.46万 - 项目类别:
Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome
西奈山阐明可药物基因组的知识管理中心
- 批准号:
9558160 - 财政年份:2014
- 资助金额:
$ 41.46万 - 项目类别:
Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome
西奈山阐明可药物基因组的知识管理中心
- 批准号:
8785466 - 财政年份:2014
- 资助金额:
$ 41.46万 - 项目类别:
Network Based Predictive Drug Discovery for Alzheimer's Disease
基于网络的阿尔茨海默病预测药物发现
- 批准号:
8849718 - 财政年份:2014
- 资助金额:
$ 41.46万 - 项目类别:
Mount Sinai's Knowledge Management Center for Illuminating the Druggable Genome
西奈山阐明可药物基因组的知识管理中心
- 批准号:
9325632 - 财政年份:2014
- 资助金额:
$ 41.46万 - 项目类别:
Methods for Evolutionary Informed Network Analysis to Discover Disease Variation
用于发现疾病变异的进化知情网络分析方法
- 批准号:
8482670 - 财政年份:2013
- 资助金额:
$ 41.46万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 41.46万 - 项目类别:
Connecting the universe of proteins to address annotation inequality in the microbial proteome
连接蛋白质领域以解决微生物蛋白质组中的注释不平等问题
- 批准号:
10658439 - 财政年份:2023
- 资助金额:
$ 41.46万 - 项目类别:
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
- 批准号:
10493806 - 财政年份:2022
- 资助金额:
$ 41.46万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 41.46万 - 项目类别:
A unified quantitative modeling strategy for multiplex assays of variant effect
用于变异效应多重分析的统一定量建模策略
- 批准号:
10366897 - 财政年份:2022
- 资助金额:
$ 41.46万 - 项目类别: