FRR: Semi-Structured, Under-Specified, Partially-Observable Robotic Rearrangement

FRR:半结构化、未指定、部分可观察的机器人重排

基本信息

  • 批准号:
    2309866
  • 负责人:
  • 金额:
    $ 69.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The project aims to develop advanced technologies for intelligent robots to efficiently and autonomously interact with objects in everyday, human environments, such as homes and grocery stores, given general, natural language task descriptions. This technology addresses significant societal issues, including the support of older adults in independent living. As people age, reduced mobility often leads to frequent and severe injuries due to impaired vision, home hazards, and weakness. Household robots can assist with tasks like retrieving, transferring, and rearranging items, such as setting up a dinner table or grabbing a jar from the back of a cabinet. Similarly, rearranging robots can assist with labor-intensive, repetitive inventory management tasks in retail operations. Such tasks, like tidying and restocking shelves, are labor-intensive and can lead to injuries, while these jobs are often difficult to fill and have high turnover rates.Reliably performing these object manipulation tasks in human, semi-structured environments involves significant uncertainty and remains challenging for modern robotics. Furthermore, new objects are frequently introduced and manipulated in semi-structured environments, such as modern homes or grocery stores, further complicating the task for robots. In particular, autonomous robots face multiple hurdles in solving manipulation tasks in these scenarios, including (1) a robot must derive a complete manipulation plan from implicit task specifications given by non-expert humans, (2) the robot must achieve accurate scene understanding in environments where prior knowledge of objects is not always available, and (3) the planning process must respect realistic partial observability constraints, where sensors like RGB-D cameras can only inspect portions of a scene at a time. To address the limitations of the state-of-the-art, the project will develop a novel Iterative Scene Understanding and Rearrangement Planning framework. The framework will build increasingly accurate models of a robot's environment progressively. The adaptive scene representation will contain the identities, geometries, and possible locations of partially observed objects, to a level sufficient for safely and effectively resolving human-assigned tasks. This representation will be leveraged to efficiently execute manipulation tasks provided by people as natural language commands under realistic visibility constraints. The project will also lay the groundwork for efficient implementations of this framework, aiming to deliver natural, high-quality solutions that achieve desirable guarantees, such as safety, resolution completeness, and solution optimality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在为智能机器人开发先进的技术,以在鉴于一般的自然语言任务描述,以便在日常的,人类环境(例如房屋和杂货店)中与物体(例如房屋和杂货店)中的物体进行自主互动。该技术解决了重大的社会问题,包括在独立生活中的老年人的支持。随着人们的年龄,降低的流动性通常会导致视力,家庭危害和弱点造成的频繁和严重伤害。家用机器人可以协助检索,转移和重新安排物品等任务,例如设置餐桌或从橱柜后面抓住罐子。同样,重新安排的机器人可以在零售业务中协助劳动密集型,重复性的库存管理任务。这样的任务,例如整理和补货货架,是劳动密集型的,可能会导致受伤,而这些工作通常很难填补并具有很高的营业率。在人类,半结构化环境中执行这些对象操纵任务涉及严重的不确定性,并涉及现代机器人技术的挑战。此外,在半结构化环境(例如现代房屋或杂货店)中经常引入和操纵新对象,从而使机器人的任务变得更加复杂。特别是,自主机器人在解决这些情况下解决操纵任务时面临多个障碍,包括(1)机器人必须从非专家人体给予的隐式任务规范中得出完整的操纵计划一次场景的部分。为了解决最新的局限性,该项目将开发出一种新颖的迭代场景理解和重新安排计划框架。该框架将逐步建立越来越精确的机器人环境模型。 自适应场景表示形式将包含部分观察到的对象的身份,几何形状和可能的位置,达到足以安全有效地解决人类分配的任务的水平。该表示形式将被利用以有效执行人们在现实的可见性约束下作为自然语言命令提供的操纵任务。该项目还将为该框架的有效实施奠定基础,旨在提供自然,高质量的解决方案,以实现可取的保证,例如安全性,解决方案完整性和解决方案最佳性。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响来评估的支持,并被认为是值得的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kostas Bekris其他文献

Kostas Bekris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kostas Bekris', 18)}}的其他基金

Collaborative Research: RI: Medium: Robust Assembly of Compliant Modular Robots
合作研究:RI:中:兼容模块化机器人的稳健组装
  • 批准号:
    1956027
  • 财政年份:
    2020
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands
NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习
  • 批准号:
    1734492
  • 财政年份:
    2017
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Standard Grant
RI: Small: Taming Combinatorial Challenges in Multi-Object Manipulation
RI:小:克服多对象操纵中的组合挑战
  • 批准号:
    1617744
  • 财政年份:
    2016
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Continuing Grant
EAGER: Provably Efficient Motion Planning After Finite Computation Time
EAGER:有限计算时间后可证明高效的运动规划
  • 批准号:
    1451737
  • 财政年份:
    2014
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Standard Grant
BSF:2012166:A Framework for Composite Techniques in Motion Planning
BSF:2012166:运动规划中的复合技术框架
  • 批准号:
    1330789
  • 财政年份:
    2013
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Standard Grant

相似国自然基金

微结构集成的狄拉克半金属太赫兹探测机理与器件研究
  • 批准号:
    62305077
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂海洋环境多水下结构系统振动声辐射分析的半解析联合计算方法
  • 批准号:
    12372196
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于界面微结构的半液态金属柔性可拉伸电极及其图案化机理研究
  • 批准号:
    62304150
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
快速加载下稀土倍半氧化物结构相变
  • 批准号:
    12374019
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于半互穿聚合物网络结构的超薄阴离子交换膜的制备及应用基础研究
  • 批准号:
    22375025
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Scalable Cleaning, Integration and Analysis of Structured and Semi-Structured Inconsistent Data
结构化和半结构化不一致数据的可扩展清理、集成和分析
  • 批准号:
    RGPIN-2019-04068
  • 财政年份:
    2022
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Discovery Grants Program - Individual
Elucidating patient and healthcare practitioner decision-making about chemotherapy-induced peripheral neuropathy-related treatment changes
阐明患者和医疗保健从业者对化疗引起的周围神经病变相关治疗变化的决策
  • 批准号:
    468581
  • 财政年份:
    2022
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Operating Grants
Understanding why clinical investigators launch early phase clinical trials
了解临床研究人员为何开展早期临床试验
  • 批准号:
    486069
  • 财政年份:
    2022
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Studentship Programs
Understanding Barriers and Facilitators to the Treatment of Sleep-Disordered Breathing in Pregnancy and Postpartum
了解治疗妊娠期和产后睡眠呼吸障碍的障碍和促进因素
  • 批准号:
    468545
  • 财政年份:
    2022
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Operating Grants
Leveraging Dynamically Linked Representations in a Semi-Structured Workspace to Cultivate Mathematical Modeling Competencies Among Secondary Students (M2Studio)
利用半结构化工作空间中的动态链接表示来培养中学生的数学建模能力(M2Studio)
  • 批准号:
    2101382
  • 财政年份:
    2021
  • 资助金额:
    $ 69.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了