EAGER: Provably Efficient Motion Planning After Finite Computation Time

EAGER:有限计算时间后可证明高效的运动规划

基本信息

  • 批准号:
    1451737
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Motion planning is a fundamental capability needed for robots to operate autonomously. This project advances the understanding of state-of-the-art methods for robot motion planning and uses results from analysis to develop increasingly more capable and practical solutions, which are relevant to important applications such as driverless cars and automated manufacturing.Modern sampling-based algorithms for robot motion planning asymptotically converge to optimal trajectories. In practice, however, their execution is stopped after a finite amount of computation. This project reasons about the properties of these popular methods after finite computation time instead of an asymptotic analysis. Based on this progress, methods are developed with improved practical computational efficiency and formal probabilistic near-optimality guarantees. These techniques address a wide set of planning challenges, including problems that involve significant dynamics. This is an especially important direction, for which it is harder to apply existing solutions with near-optimality guarantees. If successful, this work will result in a paradigm shift in algorithmic motion planning and its application domains, since it provides more efficient methods with stronger formal guarantees. This project includes outreach and educational activities to disseminate research results and integrate them into curriculum.
运动规划是机器人自主操作所需的基本能力。该项目增进了对机器人运动规划最先进方法的理解,并利用分析结果开发出越来越强大和实用的解决方案,这些解决方案与无人驾驶汽车和自动化制造等重要应用相关。基于现代采样机器人运动规划算法渐近收敛到最佳轨迹。然而,在实践中,它们的执行在有限的计算量之后停止。该项目在有限的计算时间而不是渐近分析后对这些流行方法的属性进行推理。 基于这一进展,开发了具有提高的实际计算效率和形式概率接近最优保证的方法。这些技术解决了一系列广泛的规划挑战,包括涉及重大动态的问题。这是一个特别重要的方向,因为很难应用具有近乎最优保证的现有解决方案。如果成功,这项工作将导致算法运动规划及其应用领域的范式转变,因为它提供了更有效的方法和更强有力的形式保证。 该项目包括传播研究成果并将其纳入课程的外展和教育活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kostas Bekris其他文献

Kostas Bekris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kostas Bekris', 18)}}的其他基金

FRR: Semi-Structured, Under-Specified, Partially-Observable Robotic Rearrangement
FRR:半结构化、未指定、部分可观察的机器人重排
  • 批准号:
    2309866
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Robust Assembly of Compliant Modular Robots
合作研究:RI:中:兼容模块化机器人的稳健组装
  • 批准号:
    1956027
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands
NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习
  • 批准号:
    1734492
  • 财政年份:
    2017
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
RI: Small: Taming Combinatorial Challenges in Multi-Object Manipulation
RI:小:克服多对象操纵中的组合挑战
  • 批准号:
    1617744
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
BSF:2012166:A Framework for Composite Techniques in Motion Planning
BSF:2012166:运动规划中的复合技术框架
  • 批准号:
    1330789
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

SHF: Medium: Provably Correct, Energy-Efficient Edge Computing
SHF:中:可证明正确、节能的边缘计算
  • 批准号:
    2403144
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
  • 批准号:
    2315725
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
RI: Small: Towards Provably Efficient Representation Learning in Reinforcement Learning via Rich Function Approximation
RI:小:通过丰富函数逼近实现强化学习中可证明有效的表示学习
  • 批准号:
    2154711
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Provably Efficient Dynamic Analysis Tools for Task Parallel Computations
SHF:小型:可证明高效的任务并行计算动态分析工具
  • 批准号:
    1910568
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Efficient Provably Secure Blockchain Protocols And Applications
高效、可证明安全的区块链协议和应用程序
  • 批准号:
    18K17999
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了