NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands

NRI:INT:COLLAB:利用自适应手实现稳健抓取和灵巧操作的集成建模和学习

基本信息

  • 批准号:
    1734492
  • 负责人:
  • 金额:
    $ 86.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Robots need to effectively interact with a large variety of objectsthat appear in warehouses and factories as well as homes and offices.This requires robust grasping and dexterous manipulation of everydayobjects through low cost robots and low complexity solutions.Traditionally, robots use rigid hands and analytical models for suchtasks, which often fail in the presence of even small errors. Newcompliant hands promise improved performance, while minimizingcomplexity, and increased robustness. Nevertheless, they areinherently difficult to sense and model. This project combines ideasfrom different robotics sub-fields to address this limitation. Itutilizes progress in machine learning and builds on a strong traditionin robot modeling. The objective is to provide adaptive, compliantrobots that are better in grasping objects in the presence of multipleunknown contact points and sliding or rolling objects in-hand. Thebroader impact will be strengthened by the open release of new ormodified robot hand designs, improved control algorithms and software,as well as corresponding data sets. Furthermore, academicdissemination will be accompanied by educational outreach toundergraduate and high school students.Towards the above objective, the first step will be the definition ofnew hybrid models appropriate for adaptive, compliant hands. Thiswill happen by improving analytical solutions and extending them toallow adaptation based on data via novel, time-efficient learningmethods. The objective is to capture model uncertainty inherent inreal-world interactions; a process that suffers from data scarcity.In order to reduce the amount of data required for learning, differentmodels will be tailored to specific tasks through an automateddiscovery of these tasks and of underlying motion primitives for eachone of them. This task identification process will operate iterativelywith learning and utilize improved models to discover new tasks. Itcan also provide feedback for improved hand design. Once theselearning-based and task-focused models are available, they will beused to learn and synthesize controllers for grasping and in-handmanipulation. To learn controllers, this work will consider amodel-based, reinforcement learning approach, which will be evaluatedagainst alternatives. For controller synthesis, existing tools forthis purpose will be integrated with task planning primitives andextended through learning processes to identify the preconditionsunder which different controllers can be chained together. The projectinvolves extensive evaluation on a variety of novel adaptive hands androbotic arms designed in the PIs' labs. Modern vision-based solutionswill be used to track grasped objects and provide feedback forlearning and closed-loop control. The evaluation will measure whetherthe developed hybrid models can significantly improve robustness ofgrasping and the effectiveness of dexterous manipulation.
机器人需要与仓库、工厂、家庭和办公室中出现的各种物体进行有效的交互。这需要通过低成本的机器人和低复杂性的解决方案对日常物体进行强大的抓取和灵巧的操纵。传统上,机器人使用刚性的手和分析模型对于此类任务,即使存在很小的错误,也常常会失败。新的顺应指针有望提高性能,同时最大限度地降低复杂性并提高稳健性。然而,它们本质上很难感知和建模。该项目结合了不同机器人子领域的想法来解决这一限制。它利用了机器学习的进步,并建立在机器人建模的强大传统之上。目标是提供自适应、顺从的机器人,在存在多个未知接触点以及手中滑动或滚动物体的情况下,能够更好地抓取物体。通过公开发布新的或改进的机器人手设计、改进的控制算法和软件以及相应的数据集,将加强更广泛的影响。此外,学术传播还将伴随着对本科生和高中生的教育推广。为了实现上述目标,第一步将是定义适合适应性、顺应性双手的新混合模型。 这将通过改进分析解决方案并扩展它们以允许通过新颖、高效的学习方法基于数​​据进行适应来实现。目标是捕捉现实世界交互中固有的模型不确定性;这是一个遭受数据稀缺的过程。为了减少学习所需的数据量,通过自动发现这些任务以及每个任务的底层运动原语,将针对特定任务定制不同的模型。该任务识别过程将通过学习迭代进行,并利用改进的模型来发现新任务。它还可以为改进手部设计提供反馈。一旦这些基于学习和以任务为中心的模型可用,它们将用于学习和合成用于抓取和手动操作的控制器。为了学习控制器,这项工作将考虑基于模型的强化学习方法,该方法将针对替代方案进行评估。对于控制器合成,用于此目的的现有工具将与任务规划原语集成,并通过学习过程进行扩展,以确定不同控制器可以链接在一起的先决条件。该项目涉及对 PI 实验室设计的各种新型自适应手和机械臂进行广泛评估。现代基于视觉的解决方案将用于跟踪抓取的物体并为学习和闭环控制提供反馈。 评估将衡量开发的混合模型是否能够显着提高抓取的鲁棒性和灵巧操作的有效性。

项目成果

期刊论文数量(50)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interleaving Monte Carlo Tree Search and Self-Supervised Learning for Object Retrieval in Clutter
Object Rearrangement with Nested Nonprehensile Manipulation Actions
使用嵌套的不可理解的操作操作重新排列对象
Uniform Object Rearrangement: From Complete Monotone Primitives to Efficient Non-Monotone Informed Search
统一对象重排:从完整的单调基元到高效的非单调知情搜索
Tools for Data-driven Modeling of Within-Hand Manipulation with Underactuated Adaptive Hands
欠驱动自适应手的手内操作数据驱动建模工具
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sintov, Avishai;Kimmel, Andrew;Wen, Bowen;Boularias, Abdeslam;Bekris, Kostas
  • 通讯作者:
    Bekris, Kostas
Any-axis Tensegrity Rolling via Bootstrapped Learning and Symmetry Reduction
通过引导学习和对称性降低进行任意轴张拉整体滚动
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kostas Bekris其他文献

Kostas Bekris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kostas Bekris', 18)}}的其他基金

FRR: Semi-Structured, Under-Specified, Partially-Observable Robotic Rearrangement
FRR:半结构化、未指定、部分可观察的机器人重排
  • 批准号:
    2309866
  • 财政年份:
    2023
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Robust Assembly of Compliant Modular Robots
合作研究:RI:中:兼容模块化机器人的稳健组装
  • 批准号:
    1956027
  • 财政年份:
    2020
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
RI: Small: Taming Combinatorial Challenges in Multi-Object Manipulation
RI:小:克服多对象操纵中的组合挑战
  • 批准号:
    1617744
  • 财政年份:
    2016
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Continuing Grant
EAGER: Provably Efficient Motion Planning After Finite Computation Time
EAGER:有限计算时间后可证明高效的运动规划
  • 批准号:
    1451737
  • 财政年份:
    2014
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
BSF:2012166:A Framework for Composite Techniques in Motion Planning
BSF:2012166:运动规划中的复合技术框架
  • 批准号:
    1330789
  • 财政年份:
    2013
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant

相似国自然基金

隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
  • 批准号:
    81100439
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NRI: INT: COLLAB: Muscle Ultrasound Sensing for Intuitive Control of Robotic Leg Prostheses
NRI:INT:COLLAB:用于机器人假肢直观控制的肌肉超声传感
  • 批准号:
    2054343
  • 财政年份:
    2020
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Distributed co-Robots for Strawberry Harvesting
NRI:INT:COLLAB:用于草莓采摘的分布式协作机器人
  • 批准号:
    1924622
  • 财政年份:
    2019
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Raining Drones: Mid-Air Release & Recovery of Atmospheric Sensing Systems
NRI:INT:协作:无人机下雨:空中发布
  • 批准号:
    1925052
  • 财政年份:
    2019
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Leveraging Environmental Monitoring UAS in Rainforests
NRI:INT:协作:利用雨林中的环境监测无人机
  • 批准号:
    1925262
  • 财政年份:
    2019
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
NRI: INT: COLLAB: Program Verification and Synthesis for Collaborative Robots
NRI:INT:COLLAB:协作机器人的程序验证和综合
  • 批准号:
    1925043
  • 财政年份:
    2019
  • 资助金额:
    $ 86.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了