Rheology revealed by microscopic rotation: orientation fluctuations, friction and mechanics in colloidal gels

微观旋转揭示的流变学:胶体凝胶中的取向波动、摩擦和力学

基本信息

  • 批准号:
    2226485
  • 负责人:
  • 金额:
    $ 69.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Non-technical abstract:Soft solids formed from particle gels are found in a wide range of materials, with applications ranging from consumer products to bio-manufacturing and additive manufacturing. Despite their importance, we lack a fundamental understanding of the connection between the microscopic structure and dynamics of the particles and the macroscopic mechanical properties of the gel. As a result, we have only limited capacity to predict basic properties like gel stiffness and ultimate strength even with detailed knowledge of the particle properties and of the solvent in which they are immersed. This, in turn, limits our ability to engineer gel properties. In this work we will use a suite of novel tools to reveal, for the first time, the dynamics of rotations of individual particles, and use this information to determine how the particles assemble into networks that support forces and determine the stiffness and strength of the gels. We will use these insights to develop robust pathways to engineering materials with defined properties and support the design of tunable and adaptive materials for applications such as self-healing, stimuli-responsive materials, and materials for 3D printing. In addition, this project will support efforts to harness soft materials to address the profound challenges of sustainability by strengthening contacts between the soft matter research community and policy makers.Technical abstract:Particle-resolved studies of gels formed when micron-scale colloidal particles interact via short ranged attraction, mediated by the depletion interaction, have provided a wealth of information and considerable insight into the connection between gel microstructure and mechanical properties. However, much of this work is limited by the inability to directly assess particle-scale interactions and dynamics in the gel state. This project employs novel colloidal particles containing an off-center core that allows for precise determination of the orientation of each particle by fluorescence microscopy, in combination with advanced instrumentation that allows for simultaneous high speed confocal imaging and rheology. The project leverages the fact that the orientation dynamics of the particles provide a very sensitive measure of interparticle interactions, and in particular, that monitoring the rotational Brownian motion of individual particles reveals a transition from rotationally mobile to arrested states as the strength of the depletion interaction is increased. In this research, the PIs exploit the local information provided by this transition to address fundamental questions about the links between microscopic heterogeneity and macroscopic rheology. Complementary computer simulations, building on an existing platform that reproduces many aspects of particle gel rheology, inform and are informed by the experimental results. The research also exploits Boundary Stress Microscopy, a technique developed by the PIs enabling measurement of local stresses at the boundary of a sheared gel with high spatial and temporal resolution, to directly connect particle interactions to mesoscale stress heterogeneity. The impact of surface modifications that change interparticle friction on the rotational dynamics-rheology connection will also be assessed. The insights from these measurements are used to develop and validate computational models, which in turn guide the development of predictive models connecting micro- and meso-scale material heterogeneities to their macroscopic mechanics. The research is disseminated through the network maintained by the Institute for Soft Matter Synthesis and Metrology at Georgetown, including the semi-annual Mid-Atlantic Soft Matter Workshops, and connects to an initiative to integrate Sustainable Materials into efforts at Georgetown’s newly formed Earth Commons Institute for Environment and Sustainability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:由颗粒凝胶形成的软固体存在于多种材料中,其应用范围从消费品到生物制造和增材制造,尽管它们很重要,但我们对微观结构之间的联系缺乏基本的了解。因此,即使详细了解颗粒特性和它们所浸入的溶剂,我们预测凝胶刚度和极限强度等基本特性的能力也有限。 。这,反过来,限制了我们设计凝胶特性的能力。在这项工作中,我们将使用一套新颖的工具来首次揭示单个粒子的旋转动力学,并使用这些信息来确定粒子如何组装成网络。我们将利用这些见解来开发具有明确特性的工程材料的稳健途径,并支持可调谐和自适应材料的设计,用于自修复、刺激响应材料、和 3D 材料此外,该项目还将通过加强软物质研究界和政策制定者之间的联系,支持利用软材料应对可持续发展的深刻挑战。技术摘要:微米级胶体颗粒形成凝胶的颗粒解析研究。通过耗尽相互作用介导的短程吸引力相互作用,为凝胶微观结构和机械性能之间的联系提供了丰富的信息和相当多的见解。然而,这项工作的大部分受到无法直接评估颗粒尺度相互作用的限制。动态在该项目采用了含有偏心核心的新型胶体颗粒,可以通过荧光显微镜精确确定每个颗粒的方向,并结合先进的仪器,可以同时进行高速共焦成像和流变学。事实上,粒子的取向动力学提供了粒子间相互作用的非常灵敏的测量,特别是,监测单个粒子的旋转布朗运动揭示了从旋转移动状态到停滞状态的转变,因为耗尽相互作用的强度为在这项研究中,PI 利用这种转变提供的局部信息来解决有关微观异质性和宏观流变学之间联系的基本问题,建立在重现颗粒凝胶流变学许多方面的现有平台上。该研究还利用边界应力显微镜,这是一种由 PI 开发的技术,能够以高空间和时间分辨率测量剪切凝胶边界的局部应力,以直接连接。还将评估改变颗粒间摩擦的表面修饰对旋转动力学-流变学联系的影响,这些测量结果将用于开发和验证计算模型,从而指导预测的发展。将微观和中观尺度材料异质性与其宏观力学联系起来的模型该研究通过乔治城软物质合成和计量研究所维护的网络传播,包括半年一次的大西洋中部。软物质研讨会,并与乔治城新成立的地球共享环境与可持续发展研究所反映的一项将可持续材料纳入努力的倡议相关。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Urbach其他文献

Jeffrey Urbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Urbach', 18)}}的其他基金

REU Site: Georgetown University REU for Materials Physics
REU 站点:乔治城大学材料物理 REU
  • 批准号:
    1950502
  • 财政年份:
    2020
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Continuing Grant
Symposium to Honor the Legacy of Vera Rubin
纪念维拉·鲁宾遗产研讨会
  • 批准号:
    1929903
  • 财政年份:
    2019
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant
Orientation and stress dynamics in shear thickening colloidal rod suspensions
剪切增稠胶体棒悬浮液中的取向和应力动力学
  • 批准号:
    1907705
  • 财政年份:
    2019
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant
Spatiotemporal Dynamics of Stresses in Shear Thickening Suspensions
剪切增稠悬浮液中应力的时空动力学
  • 批准号:
    1809890
  • 财政年份:
    2018
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant
REU Site: Georgetown University REU for Materials Physics
REU 站点:乔治城大学材料物理 REU
  • 批准号:
    1659532
  • 财政年份:
    2017
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Standard Grant
REU Site: Georgetown University REU for Materials Physics
REU 站点:乔治城大学材料物理 REU
  • 批准号:
    1358978
  • 财政年份:
    2014
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Continuing Grant
REU Site: Georgetown University REU Site for Materials Physics
REU 站点:乔治城大学材料物理 REU 站点
  • 批准号:
    1004268
  • 财政年份:
    2010
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Continuing Grant
Deformations in Heterogeneous Biopolymer Networks
异质生物聚合物网络中的变形
  • 批准号:
    0804782
  • 财政年份:
    2008
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Continuing Grant
A High Speed Confocal Microscope for Tracking Single Molecules
用于追踪单分子的高速共焦显微镜
  • 批准号:
    0353030
  • 财政年份:
    2004
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Continuing Grant
CAREER: Non-equilibrium Dynamics of Thin Fluidized Granular Media
职业:薄流化颗粒介质的非平衡动力学
  • 批准号:
    9875529
  • 财政年份:
    1999
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Fellowship Award
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
  • 批准号:
    2305609
  • 财政年份:
    2024
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Fellowship Award
Particle Acceleration Region in Solar Flares Revealed by New-Generation Multi-Wavelength Observations
新一代多波长观测揭示太阳耀斑中的粒子加速区域
  • 批准号:
    23K03455
  • 财政年份:
    2023
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Earth History Revealed by Iron Electrons in Dense Core-Mantle Boundary Provinces
致密核幔边界区铁电子揭示的地球历史
  • 批准号:
    23K03524
  • 财政年份:
    2023
  • 资助金额:
    $ 69.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CITE-sequencing analysis revealed immune cell diversity in colonic mesenteric lymph nodes from IBD patients
CITE 测序分析揭示了 IBD 患者结肠肠系膜淋巴结中的免疫细胞多样性
  • 批准号:
    495175
  • 财政年份:
    2023
  • 资助金额:
    $ 69.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了