CIF:Small:Learning Sparse Vector and Matrix Graphs from Time-Dependent Data
CIF:小:从瞬态数据中学习稀疏向量和矩阵图
基本信息
- 批准号:2308473
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Graphs are mathematical structures that are frequently used to express dependencies or similarities among data variables. They can capture complex structures inherent in seemingly irregular high-dimensional data, making them an invaluable tool in signal processing, machine learning, and data science. Applications of graphical models include classification and exploratory data analysis in finance, social networks, environmental networks, gene regulatory networks, and functional magnetic resonance imaging (fMRI). However, graphs are not always explicitly available. Therefore, given data, learning the underlying graph structure is central to applications in machine learning and signal processing. In the literature, it is typically assumed that the temporal data consists of multiple independent realizations of a random vector or matrix in the choice of the objective function to be optimized as well as in algorithm design and analysis. This assumption is often violated in practice. This project explicitly considers time-dependent data, without requiring any detailed parametric modeling to capture time dependencies. It is anticipated that better models incorporating short- and long-memory time dependence will yield more accurate graph topology, hence, significant improvements in data analysis and learning tasks. The problem of differential graph estimation is also addressed in this framework where, for example, in a bio-statistical application, one may be interested in the differences in the graphical models of healthy and impaired subjects, or models under different disease states, given gene-expression data or fMRI signals.In this project, three main research thrusts are considered: multivariate dependent time-series graph learning under both short- and long-range dependence, matrix-valued dependent time-series graph learning, and differential graph learning. The focus in all three thrusts is on sparse graphs or sparse differential graphs, under high-dimensional settings wherein the graph size is greater than, or of the order of, the data sample size. Computationally efficient and accurate, general approaches for estimation of undirected weighted graphs from time-dependent multivariate as well as matrix-valued time series will be investigated. Two classes of approaches will be considered: frequency-domain approaches based on the discrete Fourier transform of data which yields approximately independent data in the frequency domain, allowing a broad set of analysis tools based on complex-valued signal processing to be exploited; and time-domain approaches based on time-delay embedding, casting the problem as one of multi-attribute graph estimation wherein a random vector, instead of a scalar, is associated with each graph node. All aspects of the problem will be considered: algorithm design and analysis, optimization under both convex and non-convex regularizing functions for sparse parameter estimation, model selection (choice of penalty parameters), analysis of theoretical properties (such as consistency and model recovery), and application to real data using publicly available data sets.This project is jointly funded by the Communications & Information Foundations (CIF) and the Established Program to Stimulate Competitive Research (EPSCoR) programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图是经常用于表达数据变量之间的依赖性或相似性的数学结构。它们可以捕获看似不规则的高维数据中固有的复杂结构,使其成为信号处理、机器学习和数据科学中的宝贵工具。图模型的应用包括金融、社交网络、环境网络、基因调控网络和功能磁共振成像 (fMRI) 中的分类和探索性数据分析。然而,图表并不总是明确可用的。因此,根据给定的数据,学习底层图结构是机器学习和信号处理应用的核心。在文献中,在选择要优化的目标函数以及算法设计和分析时,通常假设时间数据由随机向量或矩阵的多个独立实现组成。这一假设在实践中经常被违反。该项目明确考虑了时间依赖性数据,不需要任何详细的参数建模来捕获时间依赖性。预计结合短记忆时间依赖性和长记忆时间依赖性的更好模型将产生更准确的图拓扑,从而显着改进数据分析和学习任务。该框架还解决了差分图估计的问题,例如,在生物统计应用中,人们可能对健康和受损受试者的图形模型或不同疾病状态下的模型的差异感兴趣,给定基因-表达数据或fMRI信号。在该项目中,考虑了三个主要研究方向:短程和长程依赖下的多元依赖时间序列图学习、矩阵值依赖时间序列图学习和微分图学习。所有三个主旨的重点都是在高维设置下的稀疏图或稀疏微分图,其中图大小大于数据样本大小或为数据样本大小的数量级。将研究计算高效且准确的从依赖时间的多元以及矩阵值时间序列估计无向加权图的通用方法。将考虑两类方法:基于数据离散傅立叶变换的频域方法,该方法在频域中产生近似独立的数据,允许利用基于复值信号处理的广泛分析工具;以及基于时延嵌入的时域方法,将问题转化为多属性图估计之一,其中随机向量而不是标量与每个图节点相关联。将考虑问题的各个方面:算法设计和分析、稀疏参数估计的凸和非凸正则化函数下的优化、模型选择(惩罚参数的选择)、理论属性分析(例如一致性和模型恢复) ,以及使用公开数据集应用于真实数据。该项目由通信与信息基金会 (CIF) 和刺激竞争性研究既定计划 (EPSCoR) 项目共同资助。该奖项反映了 NSF 的法定使命,并被认为是值得的的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jitendra Tugnait其他文献
Sparse Graph Learning Under Laplacian-Related Constraints
- DOI:
10.1109/access.2021.3126675 - 发表时间:
2021-11 - 期刊:
- 影响因子:3.9
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Pilot decontamination under imperfect power control
- DOI:
10.1109/acssc.2017.8335513 - 发表时间:
2017-10 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Blind equalization and estimation of digital communication FIR channels using cumulant matching
- DOI:
10.1109/acssc.1992.269100 - 发表时间:
1992-10 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Adaptive estimation and identification for discrete systems with Markov jump parameters
- DOI:
10.1109/cdc.1981.269444 - 发表时间:
1981-12 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
A Data-Cleaning Approach to Robust Multisensor Detection of Improper Signals
一种对不当信号进行鲁棒多传感器检测的数据清理方法
- DOI:
10.1109/access.2019.2938856 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Jitendra Tugnait的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jitendra Tugnait', 18)}}的其他基金
EAGER: Learning Graphical Models of High-Dimensional Time Series
EAGER:学习高维时间序列的图形模型
- 批准号:
2040536 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
EAGER: Detection and Mitigation of Pilot Contamination Attacks and Related Issues in Massive MIMO Systems
EAGER:大规模 MIMO 系统中导频污染攻击及相关问题的检测和缓解
- 批准号:
1651133 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Complex-Valued Statistical Signal Processing with Dependent Data
CIF:小型:具有相关数据的复值统计信号处理
- 批准号:
1617610 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Using the Channel State Information for Wireless Security Enhancement
使用信道状态信息增强无线安全性
- 批准号:
0823987 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Estimation of MIMO Wireless Communications Channels: Approaches and Applications
MIMO 无线通信信道估计:方法和应用
- 批准号:
0424145 - 财政年份:2004
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Frequency-Domain Approaches to Identification of Multiple-Input Multiple-Output Systems Given Time-Domain Data
给定时域数据的多输入多输出系统辨识的频域方法
- 批准号:
9912523 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Spatio-Temporal Statistical Signal Processing For Blind Equalization and Source Separation
用于盲均衡和源分离的时空统计信号处理
- 批准号:
9803850 - 财政年份:1998
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Frequency-Domain Approaches To Control-Relevant System Identification
控制相关系统辨识的频域方法
- 批准号:
9504878 - 财政年份:1995
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Higher Order Statistical Signal and Image Processing and Analysis
高阶统计信号和图像处理与分析
- 批准号:
9312559 - 财政年份:1994
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Blind Equalization and Channel Estimation in Data Communication Systems
数据通信系统中的盲均衡和信道估计
- 批准号:
9015587 - 财政年份:1991
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
基于无监督深度学习的复材小尺寸缺陷热成像表征方法研究
- 批准号:62301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的小样本侧扫声纳小目标探测
- 批准号:42374050
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于图表示深度学习的全新小分子先导化合物筛选方法研究
- 批准号:62372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于自编码深度学习的空心涡轮叶盘高维小失效可靠性设计优化研究
- 批准号:12302156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
- 批准号:82371994
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:
2413622 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant