Spatio-Temporal Statistical Signal Processing For Blind Equalization and Source Separation
用于盲均衡和源分离的时空统计信号处理
基本信息
- 批准号:9803850
- 负责人:
- 金额:$ 6.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is concerned with analysis and processing of stochastic signals received at multiple sensors from multiple sources with focus on blind equalization of digital communications signals and on blind separation of convolutive mixtures of independent sources (signals). Multiple-input multiple-output (MIMO) models of digital communication systems arise in a wide variety of communications applications: high-speed digital subscriber lines, multi-track digital magnetic recording, multiuser/multi-access communications systems, digital radio with diversity, dually polarized radio channels, multisensor sonar/radar systems, etc. MIMO channel modeling allows for a unified and optimal approach to design of MIMO equalizers/filters/combiners for suppression of intersymbol interference (ISI), cochannel and adjacent channel interferences (CCI and ACI) and multi-access interferences (MAI). State-of-the-art in this area requires complete knowledge of the MIMO transfer function which is unrealistic for practical communication systems. In MIMO systems the training sequences must also be provided by the interference-generating sources: an utterly unrealistic assumption. One of the goals of this research program is to provide more practical answers to the above problems of great practical importance by removing the need for training sequences for adaptive multichannel equalizer design. Both second-order statistics-based and higher-order statistics-based approaches are being investigated with emphasis on the former. Emphasis is on approaches that require as few assumptions as possible compared to existing literature, e.g. common zeros among the subchannels are allowed, the channel matrix impulse response can be infinitely long, etc. The results of the proposed research on blind source separation are expected to be useful to scientists and engineers engaged in processing and analysis of multisensor data in a broad class of applications such as sonar, radar, acoustic array ap plications and monitoring of power plants and civil works. The work on blind equalization is expected to result in effective and computationally efficient algorithms for signal processing in a broad class of digital communication systems such as high-speed digital subscriber lines, multi-track digital magnetic recording and multiuser wireless communications.
这项研究涉及对多个传感器从多个源接收到的随机信号的分析和处理,重点是数字通信信号的盲均衡和独立源(信号)的卷积混合的盲分离。 数字通信系统的多输入多输出(MIMO)模型出现在各种通信应用中:高速数字用户线路、多磁道数字磁记录、多用户/多址通信系统、多样性数字无线电、双极化无线电信道、多传感器声纳/雷达系统等。MIMO 信道建模允许采用统一且最优的方法来设计 MIMO 均衡器/滤波器/组合器,以抑制码间干扰 (ISI)、同信道和相邻信道干扰 (CCI)和 ACI)和多址干扰(MAI)。该领域的最新技术需要完全了解 MIMO 传递函数,这对于实际通信系统来说是不现实的。 在 MIMO 系统中,训练序列还必须由干扰产生源提供:这是一个完全不切实际的假设。该研究计划的目标之一是通过消除自适应多通道均衡器设计中对训练序列的需要,为上述具有重要实际意义的问题提供更实用的答案。基于二阶统计的方法和基于高阶统计的方法都在研究中,重点是前者。重点是与现有文献相比需要尽可能少假设的方法,例如子通道之间允许有公共零点,通道矩阵脉冲响应可以无限长等。所提出的盲源分离研究结果预计对从事广泛的多传感器数据处理和分析的科学家和工程师有用。声纳、雷达、声学阵列应用以及发电厂和土木工程监测等应用类别。盲均衡方面的工作预计将为高速数字用户线、多磁道数字磁记录和多用户无线通信等广泛的数字通信系统中的信号处理带来有效且计算效率高的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jitendra Tugnait其他文献
Sparse Graph Learning Under Laplacian-Related Constraints
- DOI:
10.1109/access.2021.3126675 - 发表时间:
2021-11 - 期刊:
- 影响因子:3.9
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Pilot decontamination under imperfect power control
- DOI:
10.1109/acssc.2017.8335513 - 发表时间:
2017-10 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Blind equalization and estimation of digital communication FIR channels using cumulant matching
- DOI:
10.1109/acssc.1992.269100 - 发表时间:
1992-10 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Adaptive estimation and identification for discrete systems with Markov jump parameters
- DOI:
10.1109/cdc.1981.269444 - 发表时间:
1981-12 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
A Data-Cleaning Approach to Robust Multisensor Detection of Improper Signals
一种对不当信号进行鲁棒多传感器检测的数据清理方法
- DOI:
10.1109/access.2019.2938856 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Jitendra Tugnait的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jitendra Tugnait', 18)}}的其他基金
CIF:Small:Learning Sparse Vector and Matrix Graphs from Time-Dependent Data
CIF:小:从瞬态数据中学习稀疏向量和矩阵图
- 批准号:
2308473 - 财政年份:2023
- 资助金额:
$ 6.29万 - 项目类别:
Standard Grant
EAGER: Learning Graphical Models of High-Dimensional Time Series
EAGER:学习高维时间序列的图形模型
- 批准号:
2040536 - 财政年份:2020
- 资助金额:
$ 6.29万 - 项目类别:
Standard Grant
EAGER: Detection and Mitigation of Pilot Contamination Attacks and Related Issues in Massive MIMO Systems
EAGER:大规模 MIMO 系统中导频污染攻击及相关问题的检测和缓解
- 批准号:
1651133 - 财政年份:2016
- 资助金额:
$ 6.29万 - 项目类别:
Standard Grant
CIF: Small: Complex-Valued Statistical Signal Processing with Dependent Data
CIF:小型:具有相关数据的复值统计信号处理
- 批准号:
1617610 - 财政年份:2016
- 资助金额:
$ 6.29万 - 项目类别:
Standard Grant
Using the Channel State Information for Wireless Security Enhancement
使用信道状态信息增强无线安全性
- 批准号:
0823987 - 财政年份:2008
- 资助金额:
$ 6.29万 - 项目类别:
Standard Grant
Estimation of MIMO Wireless Communications Channels: Approaches and Applications
MIMO 无线通信信道估计:方法和应用
- 批准号:
0424145 - 财政年份:2004
- 资助金额:
$ 6.29万 - 项目类别:
Continuing Grant
Frequency-Domain Approaches to Identification of Multiple-Input Multiple-Output Systems Given Time-Domain Data
给定时域数据的多输入多输出系统辨识的频域方法
- 批准号:
9912523 - 财政年份:2000
- 资助金额:
$ 6.29万 - 项目类别:
Standard Grant
Frequency-Domain Approaches To Control-Relevant System Identification
控制相关系统辨识的频域方法
- 批准号:
9504878 - 财政年份:1995
- 资助金额:
$ 6.29万 - 项目类别:
Standard Grant
Higher Order Statistical Signal and Image Processing and Analysis
高阶统计信号和图像处理与分析
- 批准号:
9312559 - 财政年份:1994
- 资助金额:
$ 6.29万 - 项目类别:
Continuing Grant
Blind Equalization and Channel Estimation in Data Communication Systems
数据通信系统中的盲均衡和信道估计
- 批准号:
9015587 - 财政年份:1991
- 资助金额:
$ 6.29万 - 项目类别:
Continuing Grant
相似国自然基金
下托的生长抑素阳性神经元在颞叶癫痫中的作用及环路重构机制研究
- 批准号:82304460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A识别蛋白YTHDC2通过星形胶质细胞LCN2调控IKK/NF-κB/TNFα轴在颞叶癫痫的作用及机制研究
- 批准号:82371463
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
下托投射的胆碱能神经亚群促进颞叶癫痫形成的作用及机制研究
- 批准号:82373859
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
熊果酸通过靶向调控Reelin改善慢性颞叶癫痫和认知损伤的机制研究
- 批准号:82360711
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Spatio-temporal Chain Event Graphs for translating expert judgement into complex statistical models. (Ref:4659)
时空链事件图,用于将专家判断转化为复杂的统计模型。
- 批准号:
2859564 - 财政年份:2023
- 资助金额:
$ 6.29万 - 项目类别:
Studentship
Examining linkages between disrupted care and chronic disease outcomes during the COVID-19 pandemic: a VAMC level spatio-temporal analysis
检查 COVID-19 大流行期间中断的护理与慢性病结果之间的联系:VAMC 级别时空分析
- 批准号:
10641136 - 财政年份:2023
- 资助金额:
$ 6.29万 - 项目类别:
Big Data Modeling via Moment-Based Methodologies and the Statistical Analysis of Spatio-Temporal Measurements
通过基于矩的方法进行大数据建模以及时空测量的统计分析
- 批准号:
RGPIN-2019-06323 - 财政年份:2022
- 资助金额:
$ 6.29万 - 项目类别:
Discovery Grants Program - Individual
Spatio-temporal Methods for Surveillance of the Opioid Syndemic
阿片类药物综合征的时空监测方法
- 批准号:
10474325 - 财政年份:2021
- 资助金额:
$ 6.29万 - 项目类别:
Spatio temporal statistical models to improve short term rain forecasts
改善短期降雨预报的时空统计模型
- 批准号:
2605380 - 财政年份:2021
- 资助金额:
$ 6.29万 - 项目类别:
Studentship