Estimation of MIMO Wireless Communications Channels: Approaches and Applications
MIMO 无线通信信道估计:方法和应用
基本信息
- 批准号:0424145
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless channel is a challenging communications medium with relatively low capacity perunit bandwidth, random amplitude and phase uctuations due to multipath time-selective fading,intersymbol interference due to delay spread and multipaths, and interference from other usersdue to the broadcast nature of the radio channel. The physical link design goal is to achieve datarates close to the fundamental information capacity limits of the channel. Recent results haveshown that MIMO (multiple-input multiple-output) channels with multiple transmit and receiveantennas are capable of achieving enormous capacity gains over single antenna channels. Thishas spurred key advances in space-time processing to capitalize on increased Shannon capacity.Accurate knowledge of the CSI (channel state information) of MIMO systems is a prerequisite formost MIMO physical layer approaches. Traditionally a training sequence, in lieu of the informationsequence, is transmitted during the acquisition mode to enable the receiver to design an equalizer orestimate the channel in the presence of the aforementioned uncertainties. In the fast time-varyingcase, the training sequences may have to be transmitted periodically. For a given bandwidth, useof training sequences decreases the effective information rate. In blind channel estimation (systemidentification) and equalization no training sequences are available or used. In semi-blind channelestimation approaches, a combination of training and information sequence-based data is used sothat in addition to the training-based data, one also exploits the information in the rest of thereceived signal. In superimposed training-based approach the training sequence is \on" all the timeand is transmitted (at low power) concurrently with (superimposed on) the information sequence.This proposal is concerned with all such three techniques for channel estimation for both single userand multiple users systems and for both time-invariant frequency-selective channels and frequency-and time- selective fading channels.Identification of fast-varying nonstationary processes is best handled via structured nonsta-tionarities. Our initial focus is on time-varying channels described by a discrete-time complexexponential basis expansion model (CE-BEM) resulting in either a single-input multiple-output(SIMO) time-varying linear system for single user systems or a multiple-input multiple-output(MIMO) linear system for multiuser systems. For wireless channels such canonical models can bederived based on certain physical parameters such as signal bandwidth, channel Doppler spread andmultipath spread, up to some unknown time-invariant constants. Other modeling approaches suchas wavelet and polynomial bases, will also be considered. We are investigating blind, semi-blindand superimposed training-based system identification techniques for SIMO and MIMO channel es-timation, multiuser interference suppression, and equalization and detection of desired user's signalover asynchronous frequency- and/or time-selective fading channels.The intellectual merit of the proposed research lies in its focus on some fundamental modeling,signal design and channel estimation issues that cut across several applications areas (e.g. wirelesscommunications systems and networks, radio communications, and underwater acoustics). Boththeoretical and applications aspects are being considered.The broader impact of the project lies in graduate education of underrepresented groups,research at an EPSCoR institution, participation of students in professional society meetings, anddissemination of the research results through teaching at both undergraduate and graduate levels(particularly the courses that are part of the newly established Bachelor of Wireless Engineeringdegree program at Auburn University).A-1
无线通道是一种具有挑战性的通信介质,其容量相对较低,佩鲁尼特带宽,随机幅度和相位占相位,这是由于多学的时间选择性褪色,由于延迟扩散和多径径的间隔干扰以及从其他用户到无线电通道的广播性质而引起的。物理链路设计目标是实现接近渠道基本信息容量限制的数据。最近的结果是,具有多个发射和接收的MIMO(多输入多输出)通道能够在单个天线通道上实现巨大的容量增长。这是刺激了时空处理的关键进展,以利用增加的香农能力。对MIMO Systems的CSI(频道状态信息)的了解是一种先决条件的Formost Mimo物理层方法。传统上,训练顺序代替了信息序列,在采集模式下传输,以使接收器能够在存在上述不确定性的情况下设计均衡器。在快速的时间变化箱中,训练序列可能必须定期传输。对于给定的带宽,训练序列的使用降低了有效信息率。在盲道估计(系统识别)和均衡中,没有任何训练序列可用或使用。在半盲的频道估计方法中,除了基于训练的数据之外,还使用了基于训练和信息序列数据的组合,还可以利用这些信息在其他的信号中。在基于叠加训练的方法中,训练顺序是在“所有时间段(低功率下)同时(叠加)信息序列(叠加)。该提案与所有这三种技术有关单一用户和多个用户系统的渠道估计以及时间不变的频率频率和频率选择性的均可通过的频率及时的频率依赖的频率依赖的频道估算的所有这三种技术,均与快速的频道进行了识别。我们最初的重点是通过离散时间复杂的指数基础扩展模型(CE-BEM)所描述的,导致单个用户系统的单输入(SIMO)线性系统,用于单个用户系统或多个频道的多个频道,以供无线型号的频道使用。多普勒传播和穆尔图塔斯传播,直到一些未知的时间不变常数。还将考虑其他建模方法类似小波和多项式碱基。 We are investigating blind, semi-blindand superimposed training-based system identification techniques for SIMO and MIMO channel es-timation, multiuser interference suppression, and equalization and detection of desired user's signalover asynchronous frequency- and/or time-selective fading channels.The intellectual merit of the proposed research lies in its focus on some fundamental modeling,signal design and channel estimation issues that cut across several applications areas (e.g.无线通信系统和网络,无线电通信和水下声学)。 Boththeoretical and applications aspects are being considered.The broader impact of the project lies in graduate education of underrepresented groups,research at an EPSCoR institution, participation of students in professional society meetings, anddissemination of the research results through teaching at both undergraduate and graduate levels(particularly the courses that are part of the newly established Bachelor of Wireless Engineeringdegree program at Auburn University).A-1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jitendra Tugnait其他文献
Sparse Graph Learning Under Laplacian-Related Constraints
- DOI:
10.1109/access.2021.3126675 - 发表时间:
2021-11 - 期刊:
- 影响因子:3.9
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Pilot decontamination under imperfect power control
- DOI:
10.1109/acssc.2017.8335513 - 发表时间:
2017-10 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Blind equalization and estimation of digital communication FIR channels using cumulant matching
- DOI:
10.1109/acssc.1992.269100 - 发表时间:
1992-10 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Adaptive estimation and identification for discrete systems with Markov jump parameters
- DOI:
10.1109/cdc.1981.269444 - 发表时间:
1981-12 - 期刊:
- 影响因子:0
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
A Data-Cleaning Approach to Robust Multisensor Detection of Improper Signals
一种对不当信号进行鲁棒多传感器检测的数据清理方法
- DOI:
10.1109/access.2019.2938856 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Jitendra Tugnait - 通讯作者:
Jitendra Tugnait
Jitendra Tugnait的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jitendra Tugnait', 18)}}的其他基金
CIF:Small:Learning Sparse Vector and Matrix Graphs from Time-Dependent Data
CIF:小:从瞬态数据中学习稀疏向量和矩阵图
- 批准号:
2308473 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER: Learning Graphical Models of High-Dimensional Time Series
EAGER:学习高维时间序列的图形模型
- 批准号:
2040536 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER: Detection and Mitigation of Pilot Contamination Attacks and Related Issues in Massive MIMO Systems
EAGER:大规模 MIMO 系统中导频污染攻击及相关问题的检测和缓解
- 批准号:
1651133 - 财政年份:2016
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
CIF: Small: Complex-Valued Statistical Signal Processing with Dependent Data
CIF:小型:具有相关数据的复值统计信号处理
- 批准号:
1617610 - 财政年份:2016
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Using the Channel State Information for Wireless Security Enhancement
使用信道状态信息增强无线安全性
- 批准号:
0823987 - 财政年份:2008
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Frequency-Domain Approaches to Identification of Multiple-Input Multiple-Output Systems Given Time-Domain Data
给定时域数据的多输入多输出系统辨识的频域方法
- 批准号:
9912523 - 财政年份:2000
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Spatio-Temporal Statistical Signal Processing For Blind Equalization and Source Separation
用于盲均衡和源分离的时空统计信号处理
- 批准号:
9803850 - 财政年份:1998
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Frequency-Domain Approaches To Control-Relevant System Identification
控制相关系统辨识的频域方法
- 批准号:
9504878 - 财政年份:1995
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Higher Order Statistical Signal and Image Processing and Analysis
高阶统计信号和图像处理与分析
- 批准号:
9312559 - 财政年份:1994
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Blind Equalization and Channel Estimation in Data Communication Systems
数据通信系统中的盲均衡和信道估计
- 批准号:
9015587 - 财政年份:1991
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
低精度量化大规模MIMO无线通信系统的信道估计与预编码方法研究
- 批准号:62271395
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于网络全双工的密集分布式MIMO无线传输理论与技术研究
- 批准号:61871122
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于动态导频复用的宽带大规模MIMO无线传输方法研究
- 批准号:61471113
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
多跳无线网络中可用带宽的估计方法研究
- 批准号:61002032
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
无线多跳网络中基于MIMO和干扰调准的空间重用问题研究
- 批准号:60903206
- 批准年份:2009
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research and development on channel estimation method and performance improvement under ultra-multi-connection wireless environment
超多连接无线环境下信道估计方法及性能提升研究进展
- 批准号:
22K04085 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine Learning Methods for Parameter Estimation in Massive MIMO-based 5G Wireless Networks
基于大规模 MIMO 的 5G 无线网络参数估计的机器学习方法
- 批准号:
519061-2018 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Machine Learning Methods for Parameter Estimation in Massive MIMO-based 5G Wireless Networks
基于大规模 MIMO 的 5G 无线网络参数估计的机器学习方法
- 批准号:
519061-2018 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Inter-User-Interference Cancel for Multi-User MIMO Wireless System Using High Precision Channel Estimation
使用高精度信道估计消除多用户 MIMO 无线系统的用户间干扰
- 批准号:
17H01735 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Channel Estimation of MIMO Wireless Systems
MIMO 无线系统的信道估计
- 批准号:
312726-2004 - 财政年份:2005
- 资助金额:
$ 21万 - 项目类别:
Industrial Postgraduate Scholarships